MATLAB®
Data Import and Export

7

MATLAB

R2022b ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Data Import and Export
© COPYRIGHT 2009-2022 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
October 2015
March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019
September 2019
March 2020
September 2020
March 2021
September 2021
March 2022
September 2022

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for MATLAB 7.9 (Release 2009b)
Revised for MATLAB 7.10 (Release 2010a)
Revised for MATLAB 7.11 (Release 2010b)
Revised for MATLAB 7.12 (Release 2011a)
Revised for MATLAB 7.13 (Release 2011b)
Revised for MATLAB 7.14 (Release 2012a)
Revised for MATLAB 8.0 (Release 2012b)
Revised for MATLAB 8.1 (Release 2013a)
Revised for MATLAB 8.2 (Release 2013b)
Revised for MATLAB 8.3 (Release 2014a)
Revised for MATLAB 8.4 (Release 2014b)
Revised for MATLAB 8.5 (Release 2015a)
Revised for MATLAB 8.6 (Release 2015b)

Rereleased for MATLAB 8.5.1 (Release 2015aSP1)

Revised for MATLAB 9.0 (Release 2016a)
Revised for MATLAB 9.1 (Release 2016b)
Revised for MATLAB 9.2 (Release 2017a)
Revised for MATLAB 9.3 (Release 2017b)
Revised for MATLAB 9.4 (Release 2018a)
Revised for MATLAB 9.5 (Release 2018b)
Revised for MATLAB 9.6 (Release 2019a)
Revised for MATLAB 9.7 (Release 2019b)
Revised for MATLAB 9.8 (Release 2020a)
Revised for MATLAB 9.9 (Release 2020b)
Revised for MATLAB 9.10 (Release 2021a)
Revised for MATLAB 9.11 (Release 2021b)
Revised for MATLAB 9.12 (Release 2022a)
Revised for MATLAB 9.13 (Release 2022b)

Contents

File Opening, Loading, and Saving

1]

Supported File Formats for Import and Export 1-2
Importing Files Programmatically 1-2
Workflows for Specialized Data Formats 1-5

Import Images, Audio, and Video Interactively 1-7
Viewing the ContentsofaFile 1-7
Specifying Variables 1-7
Generating Reusable MATLABCode 1-9

Import or Export a Sequence of Files 1-10

MATIAB Example DataSets 1-11
Observational Dataot 1-11
Image Data 1-12
Geographic Data i 1-15
Videoand AudioData i 1-16

Save and Load Parts of Variables in MAT-Files 1-18
Save and Load Using the matfile Function 1-18
Load Parts of Variables Dynamically 1-19
Avoid Inadvertently Loading Entire Variables 1-20
Partial Loading and Saving Requires Version 7.3 MAT-Files 1-20

MAT-File Versions 1-22
Overview of MAT-File Versions i, 1-22
Save to Nondefault MAT-File Versionc..uuiuiuunnnn. 1-23
Data CompressSion vttt et et e 1-23
Accelerate Save and Load Operations for Version 7.3 MAT-Files 1-24

Growing Arrays Using matfile Function 1-25

Unexpected Results When Loading Variables Within a Function 1-27

Create Temporary Files 1-29

2|

Import Text Files 2-2
Import DataasTables i 2-2
Import Data as Timetables 2-2

vi

Contents

Import Dataas Matrices
Import Dataas Cell Arrayst
Import Data as SIring ATraysccvii it
Import Data with Import Options for Additional Control
Import Data Interactively

3|

Read Text File Data Using Import Tool 2-6
Select Data Interactively 2-6
Import Data from Multiple Text Files 2-8

Import Dates and Times from Text Files 2-10

Import Numeric Data from Text Files into Matrix 2-14
Import Comma-SeparatedData 2-14
Import Delimited NumericData 2-14

Import Mixed Data from Text Fileinto Table 2-16

Import Block of Mixed Data from Text File into Table or Cell Array 2-19

Write Datato Text Files i, 2-22
Export Tableto Text File i, 2-22
Export Cell Arrayto Text File 2-23
Export Numeric Arrayto Text File 2-24

Writetoa Diary File 2-26

Read Collection or Sequence of Text Files 2-27

Import Block of Numeric Data from Text File 2-30

Spreadsheets

Import Spreadsheets 3-2
Import Spreadsheet Data Using the Import Tool 3-2
Import Spreadsheet Data Using readtable 3-2
Import Spreadsheet Data as Other Data Types 3-3

Read Spreadsheet Data Using Import Tool 3-4
Select Data Interactively 3-4
Import Data from Multiple Spreadsheets 3-5
Paste Data from Clipboard 3-6

Read Spreadsheet Data into Array or Individual Variables 3-7

Read Spreadsheet DataintoTable 3-9

Read Collection or Sequence of Spreadsheet Files 3-12

Write Data to Excel Spreadsheets
Write Tabular Data to Spreadsheet File

Write Numeric and Text Data to Spreadsheet File

Disable Warning When Adding New Worksheet
Format Cells in Excel Files

Define Import Options for Tables

4

Import Text Data Files with Low-Level I/O
Overview
Reading Data in a Formatted Pattern

Reading Data Line-by-Line

Testing for End of File (EOF)

Opening Files with Different Character Encodings

Import Binary Data with Low-Level I/O
Low-Level Functions for ImportingData
Reading Binary DatainaPFile
Reading Portionsofa File
Reading Files Created on Other Systems

Export to Text Data Files with Low-Level 1/0 . ..
Write to Text Files Using fprintf

Append to or Overwrite Existing Text Files . . .
Open Files with Different Character Encodings

Export Binary Data with Low-Level 1/O

Low-Level Functions for Exporting Data
Write Binary DatatoaFile
Overwrite or Append to an Existing Binary File

Create a File for Use on a Different System . . .

Write and Read Complex Numbers

Internet of Things (IoT) Data

S|

Aggregate Data in ThingSpeak Channel

Regularize Irregularly Sampled Data

Plot Data Read from ThingSpeak Channel

Read ThingSpeak Data and Predict Battery Discharge Time with Linear

Fit

5-2

viii

Contents

6/

Importing Images 6-2
Getting Information About Image Files 6-2
Reading Image Data and Metadata from TIFF Files 6-3

ExportingtoImages i
Exporting Image Data and Metadata to TIFF Files

7

Import CDF Files Using Low-Level Functions 7-2
Represent CDF Time Values 7-4
Import CDF Files Using High-Level Functions 7-5
Exportto CDF Files 7-8
Map NetCDF API Syntax to MATLABSyntax 7-11
Import NetCDF Files and OPeNDAPData 7-13
MATLAB NetCDF Capabilities 7-13
Security Considerations When Connecting to an OPeNDAP Server 7-13
Read from NetCDF File Using High-Level Functions 7-13
Find All Unlimited Dimensions in NetCDF File 7-15
Read from NetCDF File Using Low-Level Functions 7-16
Resolve Errors Reading OPeNDAPData 7-20
Exportto NetCDF Files 7-21
MATLAB NetCDF Capabilities 7-21
Create New NetCDF File from Existing File or Template 7-21
Merge Two NetCDF Fileso e 7-22
Write Data to NetCDF File Using Low-Level Functions 7-24
Importing Flexible Image Transport System (FITS) Files 7-27
Import HDF5 Files i, 7-28
OVEIVIEW . . .o 7-28
Import Data Using High-Level HDF5 Functions 7-28
Import Data Using Low-Level HDF5 Functions 7-33
Read HDF5 Data Set Using Dynamically Loaded Filters 7-33
Exportto HDF3 Files 7-34
OVEIVIEWo 7-34
Export Data Using MATLAB High-Level HDF5 Functions 7-34
Export Data Using MATLAB Low-Level HDF5 Functions 7-35
Write HDF5 Data Set Using Dynamically Loaded Filters 7-40

Work with Non-ASCII Characters in HDF5 Files 7-41
Create Data Set and Attribute Names Containing Non-ASCII Characters

... 7-41
Create Variable-Length String Data Containing Non-ASCII Characters .. 7-42
Import HDF4 Files Programmatically 7-44
OVEIVIBW . ottt e e 7-44
Using the MATLAB HDF4 High-Level Functions 7-44
Read and Write Data Concurrently Using Single-Writer/Multiple-Reader
(SWMR) . .. 7-47
OVEIVIBW . ottt e 7-47
Requirements and Limitations 7-47
Enable SWMR Access for HDF5 File 7-47
Write to HDF5 File While Two ProcessesRead 7-48
Work with HDF5 Virtual Datasets (VDS) 7-52
OVETVIEW . . ittt e e 7-52
Createa Virtual Dataset 7-52
Work with Remotely Stored Virtual Datasets 7-52
Create Virtual Dataset from Datasets of Varying Sizes 7-53
Read and Write HDF5 Datasets Using Dynamically Loaded Filters 7-59
Install Filter Plugins i 7-59
Read Datasets Compressed with Third-Party Filters 7-60
Write Datasets Compressed with Third-Party Filters 7-60
Map HDF4 to MATLAB Syntax 7-64
Import HDF4 Files Using Low-Level Functions 7-65
About HDF4 and HDF-EOS 7-68
Exportto HDF4 Files 7-69
Write MATLAB Datato HDF4 File 7-69
Manage HDF4 Identifiers 7-70

Audio and Video

8|

Read and Write Audio Files 8-2
Record and PlayAudio 8-4
Record Audio 8-4
Play Audiot 8-6
Record or Play Audio within a Function 8-6
Read Video Files 8-8
Supported Video and Audio File Formats 8-12
Video Data in MATLAB e 8-12
Audio Datain MATLAB e 8-14

ix

Convert Between Image Sequences and Video 8-16

9

Import an XML File into a Document Object Model 9-2
The XML Document Object Model 9-2
Read an XML File Using the MAXP Parserc.vuuuuuunn. 9-3
Read an XML File Usingxmlread 9-4

Export a Document Object Model toan XML File 9-6
CreateaDOM Documentc it 9-6
Write a DOM Document Node to an XML File Using a MAXP DOMWriter

ObjeCt . .o e e 9-6
Write a DOM Document Node to an XML File Using xmlwrite 9-8
Update an Existing XML File 9-8

10|

Overview of Memory-Mapping 10-2
What Is Memory-Mapping? oot 10-2
Benefits of Memory-Mappingt 10-2
When to Use Memory-Mappingooviin ettt 10-3
Maximum Size of aMemory Mapt 10-4
Byte Orderingt 10-4

Map Fileto Memory 10-5
Create a Simple Memory Mapt 10-5
Specify Format of Your Mapped Data 10-6
Map Multiple Data Types and ATrayscovvvneeeunnnn... 10-6
SelectFiletoMap ... i e 10-8

Read from Mapped File 10-9

Write to Mapped File 10-14
Write to Memory Mapped as NumericArray 10-14
Write to Memory Mapped as Scalar Structure 10-15
Write to Memory Mapped as Nonscalar Structure 10-15
Syntaxes for Writing to Mapped File 10-16
Work with Copies of Your Mapped Data 10-17

Delete Memory Mapttt e 10-19
Ways to Deletea Memory Mapcovii it 10-19
The Effect of Shared Data Copies On Performance 10-19

Share Memory Between Applications 10-20

X Contents

Internet File Access and JSON

11|

Server Authentication 11-2
Server Authentication For RESTful Web Services 11-2
Server Authentication For HTTP Web Services 11-2

Proxy Server Authentication 11-4
RESTful Web Services, 11-4
HTTP Web Serviceso v vt e e e ns 11-4
Use MATLAB Web Preferences For Proxy Server Settings 11-4
Use System Settings For Proxy Server Settings 11-5

MATLAB and Web Services Security 11-6
MATLAB Does Not Verify Certificate Chains 11-6

Download Data from Web Service 11-7

Convert Data from Web Service 11-10

Download Web Pageand Files 11-13
Example — Use the webread Function 11-13
Example — Use the websave Function 11-13

Call Web Services from Functions 11-14
Error Messages Concerning Web Service Options 11-15

Send Email e 11-16

Perform FTP File Operations 11-17

Display Hyperlinks in the Command Window 11-19
Create Hyperlinksto Web Pages 11-19
Transfer Files Using FTP 11-19

Customize JSON Encoding for MATLAB Classes 11-20

Serial Port I/0

12

Serial Port Overview i 12-2
What Is Serial Communication? 12-2
Serial Port Interface Standard 12-2
Supported Platforms 12-3
Connecting Two Devices with a Serial Cable 12-3
Serial Port Signals and Pin Assignments 12-3
Serial Data Format 12-6
Find Serial Port Information for Your Platform 12-9

Create Serial PortObject 12-13
Create a Serial Port Object 12-13

xi

Serial Port Object Display, 12-13

Configure Serial Port Communication Settings 12-15
Write and Read Serial PortData 12-17
Rules for Completing Write and Read Operations 12-17
Writing and Reading TextData 12-17
Writing and Reading BinaryData 12-19
Use Callbacks for Serial Port Communication 12-21
Callback Properties e 12-21
Using Callbacks e 12-21
Use Serial Port Control Pins 12-22
Control Pins oo 12-22
Signaling the Presence of Connected Devices 12-22
Controlling the Flow of Data: Handshaking 12-24
Transition Your Code to serialport Interface 12-26
Removed Functionality 12-26
Discover Serial Port Devices i 12-27
Connect to Serial Port Device 12-27
Readand Write e 12-27
SendaCommandiiiiiiine ... 12-28
Read a Terminated String 12-28
Flush Data from Memory 12-29
SetTerminator e 12-30
Set UpacCallback Function 12-30
Read Serial Pin Status 12-30
Set Serial DTRand RTSPin States 12-31
Read Streaming Data from Arduino Using Serial Port Communication
.. 12-32
Troubleshooting Serial Port Interface 12-35
ISSUE . 12-35
Possible Solutions 12-35
Resolve Serial Port Connection Errors 12-38
ISSUE . ot e 12-38
Possible Solutions e 12-38
Serialport Warning - Unable to Read AllData 12-40
Serialport Warning - Unable to Read AnyData 12-41
Large Data
Getting Started with MapReduce 13-3
What Is MapReduce? 13-3
MapReduce Algorithm Phases 13-3

xii Contents

Example MapReduce Calculation 13-4

WriteaMap Function 13-9
Role of Map Function in MapReducecvuunan. 13-9
Requirements for Map Function 13-10
Sample Map Functions 13-10

Write a Reduce Function 13-13
Role of the Reduce Function in MapReduce 13-13
Requirements for Reduce Function 13-14
Sample Reduce Functions, 13-14

Speed Up and Deploy MapReduce Using Other Products 13-17
Execution Environment e 13-17
Runningin Parallel i 13-17
Application Deployment 13-17

Build Effective Algorithms with MapReduce 13-18

Debug MapReduce Algorithms 13-20
Set Breakpoint 13-20
Execute mapreducet e 13-20
Step Through Map Function 13-21
Step Through Reduce Function 13-22

Analyze Big Data in MATLAB Using MapReduce 13-25

Find Maximum Value with MapReduce 13-33

Compute Mean Value with MapReduce 13-36

Compute Mean by Group Using MapReduce 13-39

Create Histograms Using MapReduce 13-44

Simple Data Subsetting Using MapReduce 13-51

Using MapReduce to Compute Covariance and Related Quantities ... 13-57

Compute Summary Statistics by Group Using MapReduce 13-62

Using MapReduce to Fit a Logistic Regression Model 13-69

Tall Skinny QR (TSQR) Matrix Factorization Using MapReduce 13-75

Compute Maximum Average HSV of Images with MapReduce 13-80

Getting Started with Datastore 13-86
What Isa Datastore? 13-86
Create and Read from a Datastore 13-87

Select Datastore for File Format or Application 13-90
Datastores for Standard File Formats 13-90
Datastores for Specific Applications 13-90

xiii

Custom File Formats i 13-92

Nondeterministic Datastores 13-92
Work with Remote Data 13-93
AMazon S3 13-93
Azure Blob Storage0 e 13-94
Hadoop Distributed File System 13-96
Read and Analyze Large Tabular Text File 13-98
Read and Analyze Image Files 13-100
Read and Analyze MAT-File with Key-Value Data 13-104
Read and Analyze Hadoop Sequence File 13-107
Develop Custom Datastore 13-109
OVEIVIEW . ottt e e e 13-109
Implement Datastore for Serial Processing 13-110
Add Support for Parallel Processing 13-112
Add Support for Hadoop 13-113
Add Support for Shuffling 13-114
Add Support for WritingData i 13-115
Validate Custom Datastorecoiiiiiiiinnnnnn.. 13-117
Testing Guidelines for Custom Datastores 13-118
Unit Tests 13-118
Workflow Tests e 13-124
Next StepS . . oo 13-125
Develop Custom Datastore for DICOMData 13-126
Developing Custom Datastores 13-126
Class Definition i e 13-126
Using the DICOMDatastore Class, 13-130
Set Up Datastore for Processing on Different Machines or Clusters . 13-132
Save Datastore and Load on Different File System Platform 13-132
Process Datastore Using Parallel and Distributed Computing 13-133
Apache Parquet Data Type Mappings 13-135
Numeric Data Typesot i e e 13-135
Binary Data Types i e 13-138
Date and Time Data Types vt 13-140
NestedData 13-143
Tall Arrays for Out-of-Memory Data 13-146
Whatisa Tall Array?t 13-146
Benefits of Tall Arrayscouiiiin i, 13-146
Creating Tall Tables o i 13-146
Creating Tall Timetables 13-147
Creating Tall ATrays oov it e e e 13-148
Deferred Evaluation 13-148
Evaluation withgather 13-149
Saving, Loading, and Checkpointing Tall Arrays 13-150
Supporting Functions 13-151

xiv Contents

Deferred Evaluation of Tall Arrays
Display of Unevaluated Tall Arraysccvviiiieeeennn..
Evaluation with gather
Resolve Errors withgather
Example: Calculate Size of Tall Arrayc.ovuiuinnnnnn.
Example: Multi-pass Calculations with Tall Arrays
Summary of Behavior and Recommendations

Index and View Tall Array Elements
Extract Top Rows of Array
Extract Bottom Rows of Array

Indexing Tall Arrays .

Extract Tall Table Variables
Concatenation with Tall Arraysiiiiinnn...
Assignment and Deletion with Tall Arrays
Extract Specified Number of Rows in Sorted Order
Summarize Tall Array Contentsc.......
Return Subset of Calculation Results

Histograms of Tall Arrays

Visualization of Tall Arrays,
Tall Array Plotting Examples

Grouped Statistics Calculations with Tall Arrays

Extend Tall Arrays with Other Products
Statistics and Machine Learning
Control Where Your Code Runs

Work with Databases

Analyze Big Data in MATLAB Using Tall Arrays

Develop Custom Tall Array Algorithms
Reasons to Implement Custom Algorithms

Supported APIs

Background: Tall Array Blocks
Single-Step Transformation Operation
Two-Step Reduction Operation
Sliding-Window Operations
Control OQutput Data Type i
Coding and Performance Tipsoiiiiiinn ..

14

TCP/IP Communication Overview,

Create TCP/IP Client and Configure Settings
Create Object Using Host Name
Create Object Using IP Addressccviiiinnnennnn...

Set Timeout Property

14-3
14-3
14-3
14-4

Set Connect Timeout Property
Set Transfer Delay Property
View TCP/IP Object Properties

Write and Read Data over TCP/IP Interface
Write Data
Read Data . ..o
Acquire Data from Weather Station Server
Read Page from Website

Use Callbacks for TCP/IP Communication
Configure Connection in TCP/IP Explorer

Communicate Binary and ASCII Data to an Echo Server Using TCP/IP

Troubleshooting TCP/IP Client Interface
ISSUE . .o e
Possible Solutions e

Resolve TCP/IP Client Connection Errors
ISSUE . o e
Possible Solutions i

Resolve TCP/IP Client Warning: Unable to Read AnyData
ISSUE . o e
Possible Solutions e

15|

Contents

Bluetooth Low Energy Communication Overview
Prerequisitesand Setup
Bluetooth Low Energy Concepts
Services, Characteristics, and Descriptors

Find Your Bluetooth Low Energy Peripheral Devices
Scan for DevVICeS oo
ConnecttoaDeviCeottt

Work with Device Characteristics and Descriptors
Access Device Characteristics
Access Device DesSCriptorsttt e

Collect Data from Fitness Monitoring Devices

Track Orientation of Bluetooth Low Energy Device

Troubleshooting Bluetooth Low Energy

ISSUE . oo e
Possible Solutions i

Bluetooth Communication

16|

Bluetooth Communication Overview 16-2
Bluetooth Communication 16-2
Supported Platforms 16-2

Configure Bluetooth Communication Settings 16-3
Discover Your Device 16-3
Connect to Your Device and View Properties 16-4

Transmit Data Using Bluetooth Communication 16-6

Use Callbacks for Bluetooth Communication 16-8
Callback Properties i 16-8
Using Callbacks 16-8

Troubleshooting Bluetooth Communication 16-10
ISSUE . o o 16-10
Possible Solutions 16-10

Resolve Bluetooth Connection Exrors 16-12
ISSUE . o o 16-12
Possible Solutions o 16-12

Resolve Bluetooth Warning: Unable to Read AnyData 16-14
ISSUE . o ot e 16-14
Possible Solutions i e 16-14

Resolve Bluetooth Warning: Unable to Read All Data 16-15
ISSUE . . o e 16-15
Possible Solutions i 16-15

Communicate with HC-06 over Bluetooth 16-16

Transition Your Code to bluetooth Interface 16-19
Removed Functionality 16-19
Discover Bluetooth Devices 16-20
Connect to Bluetooth Device 16-20
Writeand Read 16-20
Read Terminated String 16-21
Send Command 16-22
Writeand Read BackData 16-23
Read and Parse StringData 16-23
Flush Data from Memoryc.c. .t 16-23
Set Terminator e 16-24
Set Up Callback Function, 16-24

xvii

Hardware Manager

17|

Get Started with Hardware Manager 17-2
Discover Hardwaret 17-2
Add Hardware e 17-4

xviii Contents

File Opening, Loading, and Saving

* “Supported File Formats for Import and Export” on page 1-2

* “Import Images, Audio, and Video Interactively” on page 1-7

* “Import or Export a Sequence of Files” on page 1-10

+ “MATLAB Example Data Sets” on page 1-11

* “Save and Load Parts of Variables in MAT-Files” on page 1-18

* “MAT-File Versions” on page 1-22

* “Growing Arrays Using matfile Function” on page 1-25

» “Unexpected Results When Loading Variables Within a Function” on page 1-27
* “Create Temporary Files” on page 1-29

1 Fie Opening, Loading, and Saving

Supported File Formats for Import and Export

In this section...

“Importing Files Programmatically” on page 1-2
“Workflows for Specialized Data Formats” on page 1-5

The ideal workflow to import data into MATLAB depends on how your data is formatted as well as
your personal preferences. You can import data programmatically or use a specialized workflow. The
most common solution is to import data programmatically using a function tailored for your data.

When you import data into the MATLAB workspace, the new variables you create overwrite any
existing variables in the workspace that have the same name.

Importing Files Programmatically

MATLAB includes functions tailored to import specific file formats. Consider using format-specific
functions when you want to import an entire file or only a portion of a file. Many of the format-specific
functions provide options for selecting ranges or portions of data. Some format-specific functions
allow you to request multiple optional outputs.

This table shows the file formats that you can import and export from the MATLAB application.

File Content Extension Description Import Function |Export Function
MATLAB formatted MAT Saved MATLAB workspace |load save
data Partial access of variables in |matfile matfile
MATLAB workspace
Text any, including: |Delimited numbers readmatrix writematrix
CSV Delimited numbers, or a mix |textscan none
XT of text and numbers
Column-oriented delimited readtable writetable
numbers or a mix of text and
numbers readcell writecell
readvars
Plain text readlines writelines

1-2

Supported File Formats for Import and Export

File Content Extension Description Import Function |Export Function
Spreadsheet XLS Column-oriented data in readmatrix writematrix
XLSX worksheet or range of
XLSM spreadsheet readtable writetable
XLSB (Systems readcell writecell
with Microsoft®
Excel® for readvars
Windows® only)
XLTM (import
only)
XLTX (import
only)
ODS (Systems
with Microsoft
Excel for
Windows only)
Extensible Markup XML XML-formatted text readstruct writestruct
Language
readtable writetable
readtimetable |writetimetable
Parquet formatted data | PARQUET Column-oriented data in parquetread parquetwrite
Parquet format
Data Acquisition DAQ Data Acquisition Toolbox daqread none
Toolbox™ file
Scientific data CDF Common Data Format See “Common See cdflib
Data Format”
FITS Flexible Image Transport See “FITS Files” |See “FITS Files”
System
HDF HDF4 or HDF-EOS2 See “HDF4 Files” |See “HDF4 Files”
H5 HDF5 See “HDF5 Files” |See “HDF5 Files”
NC Network Common Data Form |See “NetCDF See “NetCDF
(netCDF) Files” Files”
Image data BMP Windows Bitmap imread imwrite
GIF Graphics Interchange
Format
HDF Hierarchical Data Format
JPEG Joint Photographic Experts
JPG Group
JP2 JPEG 2000
JPF
JPX
J2C
J2K

1-3

1 Fie Opening, Loading, and Saving

File Content Extension Description Import Function |Export Function
PBM Portable Bitmap
PCX Paintbrush
PGM Portable Graymap
PNG Portable Network Graphics
PNM Portable Any Map
PPM Portable Pixmap
RAS Sun™ Raster
TIFF Tagged Image File Format
TIF
XWD X Window Dump
CUR Windows cursor resources |imread none
ICO Windows icon resources
Audio (all platforms) AU NeXT/Sun sound audioread audiowrite
SND
AIFF Audio Interchange File
Format
AIFC Audio Interchange File
Format, with compression
codecs
FLAC Free Lossless Audio Codec
OGG Ogg Vorbis
OPUS Ogg Opus
WAV Microsoft WAVE sound
Audio (Windows) M4A MPEG-4 audioread audiowrite
MP4
any Formats supported by audioread none
Microsoft Media Foundation
Audio (Mac) M4A MPEG-4 audioread audiowrite
MP4
Audio (Linux®) any Formats supported by audioread none
GStreamer
Video (all platforms) AVI Audio Video Interleave VideoReader VideoWriter
M]J2 Motion JPEG 2000
Video (Windows) MPG MPEG-1 VideoReader none
ASF Windows Media®
ASX
WMV
any Formats supported by

Microsoft DirectShow®

1-4

Supported File Formats for Import and Export

File Content Extension Description Import Function |Export Function
Video (Windows 7 or MP4 MPEG-4 VideoReader VideoWriter
later) M4V
MOV QuickTime VideoReader none
any Formats supported by
Microsoft Media Foundation
Video (Mac) MP4 MPEG-4 VideoReader VideoWriter
M4V
MPG MPEG-1 VideoReader none
MOV QuickTime
any Formats supported by
QuickTime,
including .3gp, .392,
and .dv
Video (Linux) any Formats supported by your |VideoReader none
installed GStreamer plug-ins,
including .o0gg
Triangulation STL Stereolithography stlread stlwrite
Low-level files any text format |Low-level binary text data fread fwrite
any Low-level binary fscanf fprintf
any text format |Formatted data from a text |textscan none
file or string

Workflows for Specialized Data Formats

Memory-Mapping for Binary Data

For binary data files, consider the “Overview of Memory-Mapping” on page 10-2. Memory-mapping
enables you to access file data using standard MATLAB indexing operations. Memory-mapping is a
mechanism that maps a portion of a file, or an entire file, on disk to a range of addresses within an
application's address space. The application can then access files on disk in the same way it accesses
dynamic memory. The principal benefits of memory-mapping are efficiency, faster file access, the
ability to share memory between applications, and more efficient coding.

Specialized Importing with MATLAB Toolboxes

MATLAB toolboxes perform specialized import operations. For example, use Database Toolbox™
software for importing data from relational databases. Refer to the documentation on specific
toolboxes to see the available import features.

Web Services for Reading and Writing Data

You can use web services such as a RESTful or WSDL to read and write data in an internet media
type format such as JSON, XML, image, or text. For more information, see:

* “Web Services”

* “Use WSDL with MATLAB”

1-5

1 Fie Opening, Loading, and Saving

Reading Data with Low-Level 10
If the format-specific functions cannot read your data and the specialized workflows do not fit your
needs, use low-level I/O functions such as fscanf or fread. Low-level functions allow the most

control over reading from a file, but they require detailed knowledge of the structure of your data.
This workflow is not commonly used.

See Also

Related Examples
. “Standard File Formats”

1-6

Import Images, Audio, and Video Interactively

Import Images, Audio, and Video Interactively

Import data interactively into MATLAB workspace.

In this section...

“Viewing the Contents of a File” on page 1-7
“Specifying Variables” on page 1-7
“Generating Reusable MATLAB Code” on page 1-9

Note For information on importing text files, see “Read Text File Data Using Import Tool” on page 2-
6. For information on importing spreadsheets, see “Read Spreadsheet Data Using Import Tool” on
page 3-4.

Viewing the Contents of a File

JL
Start the Import Wizard by clicking the Import Data =<1 button or calling uiimport.

To view images or video, or to listen to audio, click the < Back button on the first window that the
Import Wizard displays.

A\ Import Wizard EI@

Selectwariables to irmport using checkboxes
@ Create wvariables matching prewviews.
Create wectars frorm each colurmn using colurmn narmes,

Create wectors from each row using row names,

Wariables in ChTempirmylmage.jpg

i Marme Size Bytes Class Mo variable selected For preview,

Hz‘mylmage 630:600x3 1170000 uintd

Help < Back[Mext = [[] Gererate MATLAE code

The right pane of the new window includes a preview tab. Click the button in the preview tab to show
an image or to play audio or video.

Irmage Preview | mydrnage

Showe Irmage ‘

Specifying Variables

The Import Wizard generates default variable names based on the format and content of your data.
You can change the variables in any of the following ways:

1-7

1 Fie Opening, Loading, and Saving

1-8

* “Renaming or Deselecting Variables” on page 1-8
* “Importing to a Structure Array” on page 1-8

The default variable name for data imported from the system clipboard is A pastespecial.

If the Import Wizard detects a single variable in a file, the default variable name is the file name.
Otherwise, the Import Wizard uses default variable names that correspond to the output fields of the
importdata function. For more information on the output fields, see the importdata function
reference page.

Renaming or Deselecting Variables

To override the default variable name, select the name and type a new one.

Yariables in CATernphlogo.mat

Irnport MNarne Size Bytes Class
v EExpoMapFigurePns 1:4 32 double =
7 L 4343 14792 double
7 Hm B3 1440 double
7 FHE 43243 14792 double
7 B axen 1 2 double |E
7 FHfacet 121 8 double
7 Hlight Ll & double
7 sOUFCe =l 24 double
7 H« Tl 56 double
7 Hxq 1 56 double
7 Hh el 56 double *

To avoid importing a particular variable, clear the check box in the Import column.
Importing to a Structure Array

To import data into fields of a structure array rather than as individual variables, start the Import
Wizard by calling uiimport with an output argument. For example, the sample file durer.mat
contains three variables: X, caption, and map. If you issue the command

durerStruct = uiimport('durer.mat')
and click the Finish button, the Import Wizard returns a scalar structure with three fields:
durerStruct =
X: [648x509 double]
map: [128x3 double]
caption: [2x28 char]
To access a particular field, use dot notation. For example, view the caption field:
disp(durerStruct.caption)

MATLAB returns:

Albrecht Durer's Melancolia.
Can you find the matrix?

For more information, see “Structure Arrays”.

Import Images, Audio, and Video Interactively

Generating Reusable MATLAB Code

To create a function that reads similar files without restarting the Import Wizard, select the
Generate MATLAB code check box. When you click Finish to complete the initial import operation,
MATLAB opens an Editor window that contains an unsaved function. The default function name is
importfile.mor importfileN.m, where N is an integer.

The function in the generated code includes the following features:

For text files, if you request vectors from rows or columns, the generated code also returns
vectors.

When importing from files, the function includes an input argument for the name of the file to
import, fileToReadl.

When importing into a structure array, the function includes an output argument for the name of
the structure, newDatal.

However, the generated code has the following limitations:

If you rename or deselect any variables in the Import Wizard, the generated code does not reflect
those changes.

If you do not import into a structure array, the generated function creates variables in the base
workspace. If you plan to call the generated function from within your own function, your function
cannot access these variables. To allow your function to access the data, start the Import Wizard
by calling uiimport with an output argument. Call the generated function with an output
argument to create a structure array in the workspace of your function.

MATLAB does not automatically save the function. To save the file, select Save. For best results, use
the function name with a .m extension for the file name.

See Also
imread | VideoReader | audioread

More About

“Read Video Files” on page 8-8
“Read and Write Audio Files” on page 8-2
“Importing Images” on page 6-2

1-9

1 Fie Opening, Loading, and Saving

Import or Export a Sequence of Files

To import or export multiple files, create a control loop to process one file at a time. When
constructing the loop:

* To build sequential file names, use sprintf.

* To find files that match a pattern, use dir.

* Use function syntax to pass the name of the file to the import or export function. (For more
information, see “Choose Command Syntax or Function Syntax”.)

For example, to read files named filel. txt through file20.txt with importdata:

numfiles = 20;
mydata = cell(l, numfiles);

for k = 1l:numfiles
myfilename = sprintf('file%d.txt', k);
mydata{k} = importdata(myfilename);
end

To read all files that match *. jpg with imread:
jpegFiles = dir('*.jpg');

numfiles = length(jpegFiles);

mydata = cell(1l, numfiles);

for k = 1l:numfiles

mydata{k} = imread(jpegFiles(k).name);
end

1-10

MATLAB Example Data Sets

MATLAB Example Data Sets

MATLAB has hundreds of data sets included in the software installation spanning a variety of file
formats and sizes. These data sets are used in documentation examples and to demo software
capabilities. This topic summarizes useful data sets in a variety of formats, but it is not a

comprehensive list.

Observational Data

Filename

Description

How to Load

accidents.mat

Data on US traffic accidents and
fatalities in 2004 from the US
Department of Transportation.
The data covers all 50 states
and the District of Columbia.

File Size: 8 KB

Data Size: 51 rows, 17
variables

load accidents.mat

census.mat

US population data from 1790 -
1990.

File Size: 1 KB

Data Size: Two column vectors
with 21 elements

load census.mat

airlinesmall.csv

US domestic airline flight data
from 1987 - 2008.

File Size: 11,747 KB

Data Size: 123,523 rows, 29
variables

See “Analyze Big Data in
MATLAB Using Tall Arrays” on
page 13-187 for an example that
loads and processes this data.

patients.mat

Medical patient information for
100 fictional patients.

File Size: 3 KB

Data Size: 100 rows, 10
variables

load patients.mat

outages.csv

Data on electric utility outages
in the US.

File Size: 99 KB

Data Size: 1,468 rows, 6
variables

Load the CSV data as a table:

T = readtable('outages.csv')|;

1-11

1 Fie Opening, Loading, and Saving

Filename

Description

How to Load

penny.mat

A detailed 3-D image of the
surface of a US penny.

File Size: 2 KB

Data Size: 128-by-128 matrix

To view a surface plot of the
penny, use the command:

penny

For more information, read the
script:

edit penny.m

seamount.mat

A seamount is an underwater
mountain. The data set consists
of a set of longitude (x) and
latitude (y) locations, and
corresponding seamount
elevations (z) measured at those
coordinates.

File Size: 2 KB

Data Size: Three column
vectors with 294 elements.

load seamount.mat

wind.mat

3-D data on air currents over
North America. The data
consists of (x,y,z) position
components and (u,v,w)
velocity components.

File Size: 142 KB

Data Size: Six matrices of size
35-by-41-by-15

load wind.mat

Image Data

Filename

Description

How to Load

ngc6543a.jpg

This NASA Hubble Space
Telescope image shows one of
the most complex planetary
nebulae ever seen, NGC 6543,
nicknamed the "Cat's Eye
Nebula." Hubble reveals
surprisingly intricate structures
including concentric gas shells,
jets of high-speed gas and
unusual shock-induced knots of
gas.

File Size: 27 KB

Image Size: 600 x 650

I = imread('ngc6543a.jpg"');
imshow(I)

1-12

MATLAB Example Data Sets

Filename

Description

How to Load

streetl.jpg

A picture of a city street
including cars, pedestrians,
signs, and buildings.

File Size: 37 KB

Image Size: 640 x 480

I = imread('streetl.jpg');
imshow(I)

street2.jpg

Rl

I

A picture of a busy city
intersection.

File Size: 39 KB
Image Size: 640 x 480

I = imread('street2.jpg');
imshow(I)

mri.mat An MRI data set that contains |load mri.mat
27 image slices of a human imshow(D(:,:,:,1),map)
head. The images are arranged F nf b
' into a 4-D array of size 128- p or more information, see
AR bv-128-bv-1-by-27 Techniques for Visualizing
- y ym2hy-ad Scalar Volume Data”.
File Size: 130 KB
Image Size: 302 x 221
durer.mat An image of Albrecht Diirer's load durer.mat

Melancolia. Can you find the
magic square matrix?

File Size: 273 KB
Image Size: 683 x 741

imshow(X,map)

A colorful picture of several
varieties of peppers.

File Size: 281 KB
Image Size: 512 x 384

I = imread('peppers.png');
imshow(I)

1-13

1 Fie Opening, Loading, and Saving

Filename

Description

How to Load

corn.tif

A TIF file containing three
images of corn (indexed, RGB,
and grayscale).

File Size: 226 KB

Image Size: 312 x 415

View the indexed version of the
image.

[corn_indexed,map] = imread(
imshow(corn_indexed,map)

View the RGB version of the
image.

corn_rgb = imread('corn.tif'
imshow(corn_rgb)

View the grayscale version of
the image.

corn_gray = imread('corn.tif|

imshow(corn_gray)

flujet.mat

An image of a simulation of an
astrophysical jet experiencing
turbulence.

File Size: 21 KB

Image Size: 474 x 493

load flujet.mat
imshow(X,map)

An X-ray image of a human
spine.

File Size: 33 KB
Image Size: 664 x 460

load spine.mat
imshow(X,map)

mandrill.mat

A colorful picture of a mandrill.

File Size: 184 KB

Image Size: 674 x 573

load mandrill.mat
imshow(X,map)

1-14

'corn.tif"',

,2);

MATLAB Example Data Sets

Geographic Data

Filename Description How to Load

earth.mat A picture of earth. load earth.mat
imshow (X, map)

File Size: 32 KB
Image Size: 424 x 350

NOAA altitude data for New }oad cape.mat
England, including Cape Cod. |imshow(X,map)

File Size: 37 KB
Image Size: 534 x 453

An image of the earth. This View the earth image:
image can be combined with . .
cloudCombined. jpg to view a |E = imread(’landOcean.jpg’);
map of the earth with cloud AerE]

Cover. View the cloud cover image:
File Size: 261 KB C = imread('cloudCombined.jpg');
imshow(C)
Image Size: 2048 x 1024
cloudCombined. jpg An image of cloud coverage on |>e€ “Changing Transparency of

Images, Patches or Surfaces”
for an example that overlays
both images with transparency.

the earth. This image can be
combined with landOcean. jpg
to view a map of the earth with
cloud cover.

File Size: 810 KB
Image Size: 2048 x 1024

tsunamis.xlsx Data on tsunami occurrences, |T = readtable('tsunamis.xlsx|");
including locations. geobubble(T.Latitude,T.Longijtude, T.MaxH

File Size: 25 KB

Data Size: 162 rows, 20

variables
topo.mat Earth topography data, courtesy |See “Displaying Topographic
of the NOAA. Data”.

File Size: 115 KB

Data Size: Altitude data is a
180-by-360 matrix

1-15

1 Fie Opening, Loading, and Saving

Filename

Description

How to Load

usapolygon.mat

Latitude and longitude data for
the perimeter of the contiguous
United States.

File Size: 17 KB

Data Size: Two vectors with
4,205 elements

load usapolygon.mat

usastates.mat

Latitude and longitude data for
each state in the contiguous
United States. The data contains
a structure array with three
fields: Lat, Lon, and Name.

File Size: 45 KB

Data Size: Structure array of
size 49-by-1

load usastates.mat

Video and Audio Data

Filename

Description

How to Load

shuttle.avi

Video of a space shuttle launch
without audio, courtesy of
NASA.

File Size: 1,648 KB
Video Length: 4 s

To watch the video on your
computer:

winopen('shuttle.avi')

xylophone.mp4
xylophone.mpg

Video of a xylophone being
played. The MPG version has
audio.

File Size: 465 KB (mp4) and
645 KB (mpg)

Video Length: 4 s

To watch the videos on your
computer:

winopen('xylophone.mp4")
or

winopen('xylophone.mpg")

File Size: 25 KB
Audio Length: 1.6 s

handel.mat An excerpt of the Hallelujah load handel.mat
chorus from Handel's Messiah. |sound(y,Fs)
File Size: 137 KB
Audio Length: 8.9 s

chirp.mat Birds chirping. load chirp.mat

sound(y,Fs)

1-16

MATLAB Example Data Sets

Filename

Description

How to Load

gong.mat

A gong ringing.
File Size: 90 KB

Audio Length: 5.1 s

load gong.mat
sound(y,Fs)

laughter.mat

Hearty laughter.
File Size: 121 KB
Audio Length: 6.4 s

load laughter.mat
sound(y,Fs)

mtlb.mat A person saying "MATLAB". load mtlb.mat
sound(mtlb,Fs)
File Size: 32 KB
Audio Length: 0.5 s
splat.mat A comical splat sound. load splat.mat
sound(y,Fs)
File Size: 18 KB
Audio Length: 1.2 s
train.mat A train whistle. load train.mat
sound(y,Fs)
File Size: 30 KB
Audio Length: 1.6 s
See Also

load | save | imshow | sound | table

More About

. “Data Sets for Deep Learning” (Deep Learning Toolbox)

. “Sample Data Sets” (Statistics and Machine Learning Toolbox)
. “Data Sets and Examples” (Econometrics Toolbox)

1-17

1 Fie Opening, Loading, and Saving

Save and Load Parts of Variables in MAT-Files

In this section...

“Save and Load Using the matfile Function” on page 1-18
“Load Parts of Variables Dynamically” on page 1-19
“Avoid Inadvertently Loading Entire Variables” on page 1-20

“Partial Loading and Saving Requires Version 7.3 MAT-Files” on page 1-20

You can save and load parts of variables directly in MAT-files without loading them into memory using
the matfile function. The primary advantage of using the matfile function over the load or save
functions is that you can process parts of very large data sets that are otherwise too large to fit in
memory. When working with these large variables, read and write as much data into memory as
possible at a time. Otherwise, repeated file access can negatively impact the performance of your
code.

Save and Load Using the matfile Function

This example shows how to load, modify, and save part of a variable in an existing MAT-file using the
matfile function.

Create a Version 7.3 MAT-file with two variables, A and B.

A rand(5);

B magic(10);

save example.mat A B -v7.3;
clear A B

Construct a MatFile object from the MAT-file, example.mat. The matfile function creates a
MatFile object that corresponds to the MAT-file and contains the properties of the MatFile object.
By default, matfile only permits loading from existing MAT-files.

exampleObject = matfile('example.mat');

To enable saving, call matfile with the Writable parameter.

exampleObject = matfile('example.mat', 'Writable',true);

Alternatively, construct the object and set Properties.Writable in separate steps.

exampleObject = matfile('example.mat');
exampleObject.Properties.Writable = true;

Load the first row of B from example.mat into variable firstRowB and modify the data. When you
index into objects associated with Version 7.3 MAT-files, MATLAB® loads only the part of the variable
that you specify.

firstRowB
firstRowB

exampleObject.B(1,:);
2 * firstRowB;

Update the values in the first row of variable B in example.mat using the values stored in
firstRowB.

1-18

Save and Load Parts of Variables in MAT-Files

exampleObject.B(1l,:) = firstRowB;

For very large files, the best practice is to read and write as much data into memory as possible at a
time. Otherwise, repeated file access negatively impacts the performance of your code. For example,
suppose that your file contains many rows and columns, and that loading a single row requires most
of the available memory. Rather than updating one element at a time, update each row.

[nrowsB,ncolsB] = size(exampleObject, 'B');
for row = l:nrowsB

exampleObject.B(row,:) = row * exampleObject.B(row,:);
end

If memory is not a concern, you can update the entire contents of a variable at a time.
exampleObject.B = 10 * exampleObject.B;

Alternatively, update a variable by calling the save function with the -append option. The -append
option requests that the save function replace only the specified variable, B, and leave other
variables in the file intact. This method always requires that you load and save the entire variable.

load('example.mat','B");

B(1,:) =2 * B(1,:);

save('example.mat','-append','B");

Add a variable to the file using the matlab.io.MatFile object.

exampleObject.C = magic(8);

You also can add the variable by calling the save function with the -append option.
C = magic(8);

save('example.mat', '-append','C');
clear C

Load Parts of Variables Dynamically

This example shows how to access parts of variables from a MAT-file dynamically. This is useful when
working with MAT-files whose variables names are not always known.

Consider the example MAT-file, topography.mat, that contains one or more arrays with unknown
names. Construct a MatFile object that corresponds to the file, topography.mat. Call who to get
the variable names in the file.

exampleObject = matfile('topography.mat');
varlist = who(exampleObject)

varlist = 4x1 cell
{'topo’ }
{'topolegend'}
{'topomapl' }
{'topomap2' }

varlist is a cell array containing the names of the four variables in topography.mat.

1-19

1 Fie Opening, Loading, and Saving

1-20

The third and fourth variables, topomap1l and topomap2, are both arrays containing colormap data.
Load the colormap data from the third column of each variable into a field of the structure array, S.
For each field, specify a field name that is the original variable name prefixed by colormap . Then,
access the data in each variable as properties of exampleObject. Because varName is a variable,
enclose it in parentheses.

for index = 3:4
varName = varlist{index};

S(1).(['colormap ',varName]) = exampleObject.(varName)(:,3);
end

View the contents of the structure array, S.
S
S = struct with fields:

colormap_ topomapl: [64x1 doublel
colormap_ topomap2: [128x1 double]

S has two fields, colormap topomapl and colormap topomap2, each containing a column vector.

Avoid Inadvertently Loading Entire Variables

When you do not know the size of a large variable in a MAT-file and want to load only parts of that
variable at a time, avoid using the end keyword. Using the end keyword temporarily loads the entire
contents of the variable in question into memory. For very large variables, loading takes a long time
or generates Out of Memory errors. Instead, call the size method for MatFile objects.

For example, this code temporarily loads the entire contents of B in memory:
lastColB = exampleObject.B(:,end);
Use this code instead to improve performance:

[nrows,ncols] = size(exampleObject, 'B');
lastColB = exampleObject.B(:,ncols);

Similarly, any time you refer to a variable with syntax of the form matObj .varName, such as
exampleObject.B, MATLAB temporarily loads the entire variable into memory. Therefore, make
sure to call the size method for MatFile objects with syntax such as:

[nrows,ncols] = size(exampleObject, 'B');
rather than passing the entire contents of exampleObject.B to the size function,
[nrows,ncols] = size(exampleObject.B);

The difference in syntax is subtle, but significant.

Partial Loading and Saving Requires Version 7.3 MAT-Files

Any load or save operation that uses a MatFile object associated with a Version 7 or earlier MAT-file
temporarily loads the entire variable into memory.

Use the matfile function to create files in Version 7.3 format. For example, this code

Save and Load Parts of Variables in MAT-Files

newfile = matfile('newfile.mat');
creates a MAT-file that supports partial loading and saving.

However, by default, the save function creates Version 7 MAT-files. Convert existing MAT-files to
Version 7.3 by calling the save function with the -v7.3 option, such as:

load('durer.mat');
save('mycopy durer.mat','-v7.3");

To change your preferences to save new files in Version 7.3 format, access the Environment section

on the Home tab, and click & Preferences. Select MATLAB > General > MAT-Files. This
preference is not available in MATLAB Online™.

See Also
matfile | save | load

More About
. “Save and Load Workspace Variables”
. “Growing Arrays Using matfile Function” on page 1-25

. “MAT-File Versions” on page 1-22

1-21

1 Fie Opening, Loading, and Saving

MAT-File Versions

1-22

In this section...

“Overview of MAT-File Versions” on page 1-22
“Save to Nondefault MAT-File Version” on page 1-23
“Data Compression” on page 1-23

“Accelerate Save and Load Operations for Version 7.3 MAT-Files” on page 1-24

Overview of MAT-File Versions

MAT-files are binary MATLAB files that store workspace variables. Starting with MAT-file Version 4,
there are several subsequent versions of MAT-files that support an increasing set of features.
MATLAB releases R2006b and later all support all MAT-file versions.

By default, all save operations create Version 7 MAT-files. The only exception to this is when you
create new MAT-files using the matfile function. In this case, the default MAT-file version is 7.3.

To identify or change the default MAT-file version, access the MAT-Files Preferences.

* Select MATLAB > General > MAT-Files.

On the Home tab, in the Environment section, click {& Preferences.

The preferences apply to both the save function and the Save menu options.

The maximum size of a MAT-file is imposed only by your native file system.

This table lists and compares all MAT-file versions.

use different default
character encoding
schemes, and all
Version 6 features.

MAT-File (Supporte [Supported Features [Compressi [Maximum |Value of Preference
Version |d MATLAB on Size of version Option
Releases Each argument
Variable in save
function
Version 7.3 |[R2006b Saving and loading Yes =2 GBon '-v7.3' MATLAB
(Version parts of variables, and |(default) 64-bit Version 7.3
7.3) or all Version 7 features computers or later
later (save -v7.3)
Version 7 |R14 Unicode® character |Yes 2731 bytes |'-v7' MATLAB
(Version encoding, which (default) per variable Version 7 or
7.0) or enables file sharing later
later between systems that (save -v7)

MAT-File Versions

MAT-File |(Supporte [Supported Features [Compressi [Maximum |Value of Preference
Version |d MATLAB on Size of version Option
Releases Each argument
Variable in save
function
Version 6 |R8 N-dimensional arrays, |No 2731 bytes |'-v6' MATLAB
(Version 5) |cell arrays, structure per variable Version 5 or
or later arrays, variable later
names longer than 19 (save -v6)
characters, and all
Version 4 features.
Version 4 |All Two-dimensional No 100,000,000 |'-v4' n/a
double, character, elements per
and sparse arrays array, and
2731 bytes
per variable

Note Version 7.3 MAT-files use an HDF5 based format that requires some overhead storage to
describe the contents of the file. For cell arrays, structure arrays, or other containers that can store
heterogeneous data types, Version 7.3 MAT-files are sometimes larger than Version 7 MAT-files.

Save to Nondefault MAT-File Version

Save to a MAT-file version other than the default version when you want to:

* Allow access to the file using earlier versions of MATLAB.

» Take advantage of Version 7.3 MAT-file features.
* Reduce the time required to load and save some files by storing uncompressed data.

* Reduce the size of some files by storing compressed data.

To save to a MAT-file version other than the default version, specify a version as the last input to the
save function. For example, to create a Version 6 MAT-file named myfile.mat, type:

save('myfile.mat','-v6")

Data Compression

Beginning with Version 7, MATLAB compresses data when writing to MAT-files to save storage space.
Data compression and decompression slow down all save operations and some load operations. In
most cases, the reduction in file size is worth the additional time spent.

In some cases, loading compressed data actually can be faster than loading uncompressed data. For
example, consider a block of data in a numeric array saved to both a 10 MB compressed file and a
100 MB uncompressed file. Loading the first 10 MB takes the same amount of time for each file.
Loading the remaining 90 MB from the uncompressed file takes nine times as long as loading the first
10 MB. Completing the load of the compressed file requires only the relatively short time to
decompress the data.

The benefits of data compression are negligible in the following cases:

1-23

1 Fie Opening, Loading, and Saving

1-24

* The amount of data in each item is small relative to the complexity of its container. For example,
simple numeric arrays take less time to compress and uncompress than cell or structure arrays of
the same size. Compressing arrays that result in an uncompressed file size of less than 3 MB
offers limited benefit, unless you are transferring data over a network.

* The data is random, with no repeated patterns or consistent values.

Accelerate Save and Load Operations for Version 7.3 MAT-Files

Version 7.3 MAT-files use an HDF5-based format that stores data in compressed chunks. The time
required to load part of a variable from a Version 7.3 MAT-file depends on how that data is stored
across one or more chunks. Each chunk that contains any portion of the data you want to load must
be fully uncompressed to access the data. Rechunking your data can improve the performance of the
load operation. To rechunk data, use the HDF5 command-line tools, which are part of the HDF5
distribution.

See Also
save |matfile

More About

. “Save and Load Workspace Variables”

Growing Arrays Using matfile Function

Growing Arrays Using matfile Function

When writing a large number of large values to a MAT-file, the size of the file increases in a
nonincremental way. This method of increase is expected. To minimize the number of times the file
must grow and ensure optimal performance though, assign initial values to the array prior to
populating it with data.

For example, suppose that you have a writable MatFile object.

fileName = 'matFileOfDoubles.mat';
matObj = matfile(fileName);
matObj.Properties.Writable = true;

Define parameters of the values to write. In this case, write one million values, fifty thousand at a
time. The values should have a mean of 123.4, and a standard deviation of 56.7.

size = 1000000;
chunk = 50000;
mean = 123.4;
std = 56.7;

Assign an initial value of zero to the last element in the array prior to populating it with data.
matObj.data(l,size) = 0;

View the size of the file.

* On Windows systems, use dir.

system('dir matFileOfDoubles.mat');
¢ On UNIX® systems, use 1s -1s:

system('ls -1s matFileOfDoubles.mat');

In this case, matFileOfDoubles.mat is less than 5000 bytes. Assigning an initial value to the last
element of the array does not create a large file. It does, however, prepare your system for the
potentially large size increase of matFileOfDoubles.mat.

Write data to the array, one chunk at a time.

nout = 0;

while(nout < size)
fprintf('Writing %d of %d\n',nout,size);
chunkSize = min(chunk,size-nout);
data = mean + std * randn(1,chunkSize);
matObj.data(l, (nout+l): (nout+chunkSize)) = data;
nout = nout + chunkSize;

end

View the size of the file.
system('dir matFileOfDoubles.mat');

The file size is now larger because the array is populated with data.

See Also
matfile

1-25

1 Fie Opening, Loading, and Saving

More About
. “Save and Load Parts of Variables in MAT-Files” on page 1-18

1-26

Unexpected Results When Loading Variables Within a Function

Unexpected Results When Loading Variables Within a Function

If you have a function that loads data from a MAT-file and find that MATLAB does not return the
expected results, check whether any variables in the MAT-file share the same name as a MATLAB
function. Common variable names that conflict with function names include i, j, mode, char, size,
and path.

These unexpected results occur because when you execute a function, MATLAB preprocesses all the
code in the function before running it. However, calls to Load are not preprocessed, meaning
MATLAB has no knowledge of the variables in your MAT-file. Variables that share the same name as
MATLAB functions are, therefore, preprocessed as MATLAB functions, causing the unexpected
results. This is different from scripts, which MATLAB preprocesses and executes line by line, similar
to the Command Window.

For example, consider a MAT-file with variables height, width, and length. If you load these
variables in a function such as findVolume, MATLAB interprets the reference to length as a call to
the MATLAB length function, and returns an error.

function vol = findVolume(myfile)

load(myfile);
vol = height * width * length;
end

Error using length
Not enough input arguments.

To avoid confusion, when defining your function, choose one (or more) of these approaches:
* Load the variables into a structure array. For example:

function vol = findVolume(myfile)

dims = load(myfile);

vol = dims.height * dims.width * dims.length;
end

+ Explicitly include the names of variables in the call to the load function. For example:
function vol = findVolume(myfile)
load(myfile, 'height', 'width', 'length')

vol = height * width * length;
end

» [Initialize the variables within the function before calling Load. To initialize a variable, assign it to
an empty matrix or an empty character vector. For example:

function vol = findVolume(myfile)

height = [];
width = [];

length = [];
load(myfile);

vol = height * width * length;

To determine whether a particular variable name is associated with a MATLAB function, use the
exist function. A return value of 5 determines that the name is a built-in MATLAB function.

See Also
load

1-27

1 Fie Opening, Loading, and Saving

More About

. “Save and Load Workspace Variables”

1-28

Create Temporary Files

Create Temporary Files

Use the tempdir function to return the name of the folder designated to hold temporary files on your
system. For example, issuing tempdir on The Open Group UNIX systems returns the /tmp folder.

Use the tempname function to return a file name in the temporary folder. The returned file name is a
suitable destination for temporary data. For example, if you need to store some data in a temporary
file, then you might issue the following command first:

fileID = fopen(tempname, 'w');

In most cases, tempname generates a universally unique identifier (UUID). However, if you run
MATLAB without JVM™, then tempname generates a random name using the CPU counter and time,
and this name is not guaranteed to be unique.

Some systems delete temporary files every time you reboot the system. On other systems, designating
a file as temporary means only that the file is not backed up.

1-29

Text Files

* “Import Text Files” on page 2-2

* “Read Text File Data Using Import Tool” on page 2-6

* “Import Dates and Times from Text Files” on page 2-10

* “Import Numeric Data from Text Files into Matrix” on page 2-14

* “Import Mixed Data from Text File into Table” on page 2-16

* “Import Block of Mixed Data from Text File into Table or Cell Array” on page 2-19
* “Write Data to Text Files” on page 2-22

* “Write to a Diary File” on page 2-26

+ “Read Collection or Sequence of Text Files” on page 2-27

* “Import Block of Numeric Data from Text File” on page 2-30

2 Text Files

Import Text Files

2-2

MATLAB can read and write numeric and nonnumeric data from delimited and formatted text files,
including .csv and . txt files. Text files often contain a mix of numeric and text data as well as
variable and row names. You can represent this data in MATLAB as tables, timetables, matrices, cell
arrays, or string arrays.

Import data from text files either programmatically or interactively. Import programmatically to use
tailored import functions and further control how your data is imported using import options. Import
interactively to use the Import Tool and its user interface.

Import Data as Tables

If your text file has tabular data, you can import the data as a table. A table consists of column-
oriented variables containing rows of data of the same type. Each variable in a table can hold a
different data type and size, however, each variable must have the same number of rows. For more
information about tables, see “Create Tables and Assign Data to Them”.

Import tabular data from a text file into a table using the readtable function with the file name. For
example, create a table from the sample file airlinesmall.csv.

T = readtable('airlinesmall.csv');

Display the first five rows and columns of the table.

T(1:5,1:5)

ans =
5x5 table

Year Month DayofMonth DayOfWeek DepTime

1987 10 21 3 {'642"' }
1987 10 26 1 {'1021"'}
1987 10 23 5 {'2055"}
1987 10 23 5 {'1332"'}
1987 10 22 4 {'629" }

Import Data as Timetables

If your text file has tabular data where each row is associated with a time, you can import the data as
a timetable. Like tables, timetables allow you to store tabular data variables that can have different
data types and sizes as long as they have the same number of rows. In addition, a timetable provides
time-specific functions to align, combine, and perform calculations with time-stamped data in one or
more timetables. For more information about timetables, see “Create Timetables”.

Import tabular data from a text file into a timetable using the readtimetable function. For example,
create a timetable from the sample file outages.csv.

TT = readtimetable('outages.csv');

Display the first five rows and columns of the timetable.

Import Text Files

TT(1:5,1:5)

ans =
5x5 timetable

OutageTime Region Loss Customers RestorationTime

Caust

2002-02-01 12:18 {'SouthWest'} 458.98 1.8202e+06 2002-02-07 16:50

2003-01-23 00:49 {'SouthEast'} 530.14 2.1204e+05 NaT
2003-02-07 21:15 {'SouthEast'} 289.4 1.4294e+05 2003-02-17 08:14
2004-04-06 05:44 {'West' } 434.81 3.4037e+05 2004-04-06 06:10

2002-03-16 06:18 {'Midwest' } 186.44 2.1275e+05 2002-03-18 23:23

Import Data as Matrices

If your text file contains uniform data (all of the same type), you can import the data as a matrix.
Importing your data into a matrix allows you to work with a minimally formatted array.

Import tabular data from a text file into a matrix using readmatrix. For example, import the data
from the sample file basic matrix.txt into a matrix.

M = readmatrix('basic matrix.txt")

M = 5x4
6 8 3 1
5 4 7 3
1 6 7 10
4 2 8 2
2 7 5 9

Import Data as Cell Arrays

A cell array is a data type with indexed data containers called cells, where each cell can contain any
type of data. Cell arrays commonly contain either lists of text, combinations of text and numbers, or
numeric arrays of different sizes.

You can import non-uniform data (each column having a different type) from a text file into a cell
array using readcell. For example, display the contents of basic cell. txt, and then import the
mixed data into a cell array.

type basic cell.txt

1,2,3
hello,world,NaN
10-0ct-2018 10:27:56,1,

C = readcell('basic cell.txt")

C=3x3 cell array

{I 11} {I 21} {I 31}
{'hello"’ } {'world'} {I NaN]}
{[10-0ct-2018 10:27:56]1} {[11} {1x1 missing}

Alternatively, you can import formatted data from a text file into a cell array using the textscan
function and a low-level I/O workflow. Low-level I/O workflows allow for the most control over

{'winter st
{'winter st
{'winter st
{'equipment
{'severe st

2-3

2 Text Files

2-4

importing data. This degree of control is not necessary for most workflows. For more information on
importing text data with low-level I/O, see “Import Text Data Files with Low-Level I/0” on page 4-2.

Import Data as String Arrays

If your text file contains lines of plain text, you can represent the plain text in MATLAB as a string
array. String arrays store pieces of text and provide a set of functions for working with text as data.
For example, you can index into, reshape, and concatenate strings arrays just as you can with arrays
of any other type.

Import lines of plain text in a text file into string arrays using readlines. For example, create a
string array from the sample text file, badpoem. txt. Since the text file has four lines of plain text,
the function creates a 4-by-1 string array.

lines = readlines("badpoem.txt")

lines = 4x1 string
"Oranges and lemons,"
"Pineapples and tea."
"Orangutans and monkeys,"
"Dragonflys or fleas."

Import Data with Import Options for Additional Control

Importing tabular data sometimes requires additional control over the import process. To customize
the import process, you can create an import options object. The object has properties that you can
adjust based on your import needs. For example, you can change the data types of variables or import
only a subset of variables. For more information about import options, see detectImportOptions.

Import Data Interactively

If you would prefer to use the user interface, you can import data interactively into a table or other
data type using the Import Tool.

To open the Import Tool, within the Home tab, in the Variable section, click Import Data I&I
Alternatively, right-click the name of the file in the Current Folder browser and select Import
Data.Then, select the file you want to import. Using the Import Tool window, set the importing
options and then click Import Selection to import the data into MATLAB. For more information, see
“Read Text File Data Using Import Tool” on page 2-6.

Import Text Files

IMPORT
—— Column delimiters: - W Output Type:
|5Fﬂ'3'5 - e = |Et|';| Column vectors
© Fixed Width) Delimiter Options Wariable Names Row: 1 <1 | 723 et Opiins ~.
DELIMITERS SELECTION IMPORTED DAT,
| grades.bd |
A B C D
John Ann Mark Rob
Mumber *MNumber ~MNumber - MNumber -
1 John Ann Mark Rob
2 Eg.4 91.5 B9.2 7.3
3 83.2 g&8.0 67.8 9l1.0
4 77.8 76.3 92.5
5 946.4 g4.6

See Also

Import Tool | readtable | table | readtimetable | readmatrix | readcell | readlines |

textscan | detectImportOptions

More About

. “Create Tables and Assign Data to Them”

. “Access Data in Tables”

. “Import Mixed Data from Text File into Table” on page 2-16
. “Create Timetables”

. “Read Text File Data Using Import Tool” on page 2-6

2-5

2 Text Files

Read Text File Data Using Import Tool

In this section...

“Select Data Interactively” on page 2-6

“Import Data from Multiple Text Files” on page 2-8

Import data from a text file by selecting data interactively. You also can repeat this import operation
on multiple text files by using the generate code feature of the import tool.

Select Data Interactively

This example shows how to import data from a text file with column headers and numeric data using
the Import Tool. The file in the example, grades . txt, contains this data:

John Ann Mark Rob
88.4 91.5 89.2 77.3
83.2 88.0 67.8 91.0
77.8 76.3 92.5
92.1 96.4 81.2 84.6

To create the file, copy and paste the data using any text editor.

On the Home tab, in the Variable section, click Import Data I&I Alternatively, right-click the
name of the file in the Current Folder browser and select Import Data. The Import Tool opens.

IMPORT

Column delimiters: Output Type:
“ Delimited Range: D5 A PR

o
Space - Uy column vectors

ixed Wi Variable Names Row: :
O Fixed Witth (&5 pefimiter Options. v e * @ TextOptions ~

DELIMITERS SELECTION IMPORTED DAT,
| grades.bd [
A B C D
John Ann Mark Rob

Murnber «MNumber wMumber = Number -

1 John Ann Mark Rob
2 BE.4 915 9.2 77.3
3 3.2 g8.0 67.8 91.0
4 T7.8 76.3 92.5
5 96.4 4.8

The Import Tool recognizes that grades . txt is a fixed width file. In the Imported Data section,
select how you want the data to be imported. The following table indicates how data is imported
depending on the option you select.

2-6

Read Text File Data Using Import Tool

Option Selected How Data is Imported

Table Import selected data as a table.

Column vectors Import each column of the selected data as an
individual m-by-1 vector.

Numeric Matrix Import selected data as an m-by-n numeric array.

String Array Import selected data as a string array that
contains text.

Cell Array Import selected data as a cell array that can
contain multiple data types, such as numeric data
and text.

Under Delimiter Options, you can specify whether the Import Tool should use a period or a comma
as the decimal separator for numeric values.

IMPORT

= . Column delimiters:
Delimited Range:
|Epa|:E -

i Wariable Names Row: 1
O Fixed Width 5, b cjimiter Options N
B COMBINE REPEATED DELIMITERS [CTION

des.bt
_Igri B Treat Multiple Delimiters as One

A
DECIMAL SEPARATOR
John #

Number ~ Numl O . (period)

TEEEREN RN & (comma)

Double-click a variable name to rename it.

A B C D
John 1 Mark Rob
M... vhIUh.l!E!\EFJb'hIUME'rER *MNUMEER ~
L||||.||||||||.||||||||.|||||||

1 (John Ann Mark Rob

2lee.4 91.5 g9.2 77.3

383.2 g8.0 67.8 91.0

4 |77.8 T6.3 92.5

5182.1 96.4 gl.2 g4.46

You also can use the Variable Names Row box in the Selection section to select the row in the text
file that you want the Import Tool to use for variable names.

The Import Tool highlights unimportable cells. Unimportable cells are cells that contain data that
cannot be imported in the format specified for that column. In this example, the cell at row 3, column
C, is considered unimportable because a blank cell is not numeric. Highlight colors correspond to

2-7

2 Text Files

2-8

proposed rules to make the data fit into a numeric array. You can add, remove, reorder, or edit rules,
such as changing the replacement value from NaN to another value.

L1 Replace ¥ unimpertable cells with = MNalM -+

4

UMIMFORTABLE CELLS

All rules apply to the imported data only and do not change the data in the file. Any time you are
importing into a matrix or into numeric column vectors and the range includes non-numeric data,
then you must specify the rules.

To see how your data is imported, place the cursor over individual cells.

A B C D

John Ann Mark Rob

M... *MUMEER *NUMEER *MNUMEER ™

LIIILIIIIIIILIIIIIIILIIIIIII
1 | John Ann Mark Rob
2|ge.4 91.5 gs.2 77.3
3 es.2 88.0 [Replaced I;:lj,r:NaNl
4 |77.8 76.3HalH 92.5
5lb2.1 96.4 e2[es.6

When you click the Import Selection button Qy the Import Tool creates variables in your
workspace.

For more information on interacting with the Import Tool, watch this video.

Import Data from Multiple Text Files

To perform the same import operation on multiple files, use the code generation feature of the Import
Tool. If you import a file one time and generate code from the Import Tool, you can use this code to
make it easier to repeat the operation. The Import Tool generates a program script that you can edit
and run to import the files, or a function that you can call for each file.

Suppose you have a set of text files in the current folder. The files are named myfile@1. txt through
myfile25. txt, and you want to import the data from each file, starting from the second row.
Generate code to import the entire set of files as follows:

Open one of the files in the Import Tool.

Click Import Selection =, and then select Generate Function. The Import Tool generates code
similar to the following excerpt, and opens the code in the Editor.

function data = importfile(filename,startRow,endRow)
%IMPORTFILE Import numeric data from a text file as a matrix.

https://www.mathworks.com/videos/import-tool-enhancements-for-text-files-101466.html

Read Text File Data Using Import Tool

3 Save the function.

In a separate program file or at the command line, create a for loop to import data from each
text file into a cell array named myData:

numFiles
startRow

25;
2;
endRow = inf;
myData = cell(1l,numFiles);

for fileNum = 1l:numFiles
fileName = sprintf('myfile%02d.txt', fileNum);
myData{fileNum} = importfile(fileName,startRow,endRow);
end

Each cell in myData contains an array of data from the corresponding text file. For example,
myData{1l} contains the data from the first file, myfile0O1. txt.

See Also
readtable | textscan | readmatrix | readcell | readvars | readtimetable

More About
. “Import Text Files” on page 2-2

2-9

2 Text Files

Import Dates and Times from Text Files

2-10

Import formatted dates and times (such as '01/01/01"' or '12:30:45"') from column oriented
tabular data in three ways.

* Import Tool — Interactively select and import dates and times.

* readtable function — Automatically detect variables with dates and times and import them into
a table.

* Import Options — Use readtable with detectImportOptions function for more control over
importing date and time variables. For example, you can specify properties such as FillValue
and DatetimeFormat.

This example shows you how to import dates and times from text files using each of these methods.

Import Tool

Open the file outages. csv using the Import Tool. Specify the formats of dates and times using the
drop-down menu for each column. You can select from a predefined date format, or enter a custom

format. To import the OutageTime column, specify the custom format yyyy-MM-dd HH:mm. Then,

click the Import Selection button to import the data into the workspace.

Import Dates and Times from Text Files

IMPORT

o Column delimiters: Qutput Type:
O Delimited | Range: |B1:B14659 - |—

“ariable Names Row: 1

Table =4

" Foxed Width &, pelimiter Options = T) Text Options

CELIMITERS SELECTION IMPORTED DATA
| outages.csy |
A B C D E
outages
Region OutageTime Loss Customers RestorationTim
Categorical +|Datetime * Number * Number w Text
1 |Region 2 P —
g—m Click here to change the data type for this column.
2 |SouthWest 2000207 1530
Text 1\
3 couthEast Text like 1.234 will convert to string ™1.234™
o NN2-N32-17 ﬁl;_l Fi
4 SouthEast | ENEBEERR 2003-02-17 08:14 A
50 West Num 2004-04-06 06:10 \
: ; umaoer
6 |MidWest 2002-03-18 23:23
- Text like "1.2234™ will convert to number 1.224 - -
7| West . i i 2003-06-18 10:54
- Categories (categorical) - -
8 |West 2004-06-20 1916
9 West Categorical 2002-06-07 00:5
Text like "orange’ will convert to categorical orange R
10 MorthEast = = - 2003-07-17 01:12
rosmmeemmem—| Dates and Times (datetime) —
11 | MidWest 2004-09-27 16:37
12 |SouthEast | Y¥yy-MM-dd HH:mm 2004-09-05 20:46
13 West [Custom Date Format like MM-dd-yyyy hh:mm:ss.555 2004-05-22 04:23
14 Southfast | [MOre date formats ... 2002-09-01 19:12
15 | SouthEast 2003-09-27 07:32 3551706825 (2003-10-04 0702
16 West 2003-11-12 06:12 2540860816 (924291.6474 |2003-11-17 02:04

-(09-18 05:54 0
\ 07,3

readtable Function

Use the readtable function and display 10 rows of the OutageTime variable. readtable
automatically detects the date time variables and formats.

filename = 'outages.csv';
T = readtable(filename);
T.OutageTime(1:10)

ans = 10x1 datetime
2002-02-01 12:18
2003-01-23 00:49
2003-02-07 21:15
2004-04-06 05:44
2002-03-16 06:18
2003-06-18 02:49

2-11

2 Text Files

2004-06-20 14:39
2002-06-06 19:28
2003-07-16 16:23
2004-09-27 11:09

Import Options

Use an import options object for more control over importing date and time variables. For example,
change the date-time display format or specify a fill value for missing dates.

Create an import options object for the outages. csv file and display the variable import options for
the variable RestorationTime. The detectImportOptions function automatically detects the
data types of the variables.

opts = detectImportOptions(filename);
getvaropts(opts, 'RestorationTime")

ans =
DatetimeVariableImportOptions with properties:

Variable Properties:
Name: 'RestorationTime'
Type: 'datetime'’
FillValue: NaT
TreatAsMissing: {}
QuoteRule: 'remove'
Prefixes: {}
Suffixes: {}
EmptyFieldRule: 'missing'’

Datetime Options:
DatetimeFormat: 'default'’
DatetimelLocale: 'en_ US'

InputFormat: ''
TimeZone: ''

Import the data and display the first 10 rows of the variable RestorationTime. The second row
contains a NaT, indicating a missing date and time value.

= readtable(filename,opts);
.RestorationTime(1:10)

— -

ans = 10x1 datetime
2002-02-07 16:50
NaT
2003-02-17 08:14
2004-04-06 06:10
2002-03-18 23:23
2003-06-18 10:54
2004-06-20 19:16
2002-06-07 00:51
2003-07-17 01:12
2004-09-27 16:37

2-12

Import Dates and Times from Text Files

To use a different date-time display format, update the DatetimeFormat property, and then replace
missing values with the current date and time by using the FillValue property. Display the updated

variable options.

opts = setvaropts(opts, 'RestorationTime’,

'DatetimeFormat', '"MMMM d, yyyy HH:mm:ss Z',...
'"FillValue', 'now');

getvaropts(opts, 'RestorationTime")

ans =

DatetimeVariableImportOptions with properties:

Variable Properties:
Name:
Type:
FillValue:
TreatAsMissing:
QuoteRule:
Prefixes:
Suffixes:
EmptyFieldRule:

Datetime Options:

DatetimeFormat:
DatetimelLocale:
InputFormat:
TimeZone:

'RestorationTime’
'datetime’

August 31, 2022 08:37:04 *
{}

'remove'

{}

{}

'missing'’

'MMMM d, yyyy HH:mm:ss Z'
'en_US'

Read the data with the updated import options and display the first 10 rows of the variable.

T = readtable(filename,opts);
T.RestorationTime(1:10)

ans = 10x1 datetime

2002-02-07
2022-08-31
2003-02-17
2004-04-06
2002-03-18
2003-06-18
2004-06-20
2002-06-07
2003-07-17
2004-09-27

16:
08:
08:
06:
23:
10:
19:
00:
01:
16:

50
37
14
10
23
54
16
51
12
37

For more information on the datetime variable options, see the setvaropts reference page.

See Also

Import Tool | readtable | detectImportOptions | setvaropts | readmatrix | readcell |
readvars | readtimetable

More About
. “Import Mixed Data from Text File into Table” on page 2-16

2-13

2 Text Files

Import Numeric Data from Text Files into Matrix

2-14

Import numeric data as MATLAB arrays from files stored as comma-separated or delimited text files.

Import Comma-Separated Data

This example shows how to import comma-separated numeric data from a text file. Create a sample
file, read all the data in the file, and then read only a subset starting from a specified location.

Create a sample file named ph.dat that contains comma-separated data and display the contents of
the file.

rng('default")

A = 0.9*%randi(99,[3 4]);

writematrix (A, 'ph.dat', 'Delimiter',"',")
type('ph.dat"')

72.9,81.9,25.2,86.4

81,56.7,49.5,14.4
11.7,9,85.5,87.3

Read the file using the readmat rix function. The function returns a 3-by-4 double array containing
the data from the file.

M

readmatrix('ph.dat')

M 3x4

72.9000 81.9000 25.2000 86.4000
81.0000 56.7000 49,5000 14.4000
11.7000 9.0000 85.5000 87.3000

Import only the rectangular portion of data starting from the first row and third column in the file.
Create an import options object and specify the columns and rows to import using the
SelectedVariableNames and Datalines properties. Then, import the selected portion of the data
from the file.

opts = detectImportOptions('ph.dat');
opts.SelectedVariableNames = {'Var3', 'Var4d'};
opts.DataLines = [1 3];
readmatrix('ph.dat',opts)

ans = 3x2
25.2000 86.4000

49.5000 14.4000
85.5000 87.3000

Import Delimited Numeric Data

Import Numeric Data from Text Files into Matrix

This example shows how to import numeric data delimited by any single character using the
writematrix function. Create a sample file, read the entire file, and then read a subset of the file
starting at the specified location.

Create a tab-delimited file named num. txt that contains a 4-by-4 numeric array and display the
contents of the file.

rng('default")

A = randi(99, [4,4]);

writematrix (A, 'num.txt', 'Delimiter', '\t"')
type('num.txt"')

81 63 95 95
90 10 96 49
13 28 16 80
91 55 97 15

Read the entire file. The readmatrix function determines the delimiter automatically and returns a
4-by-4 double array.

M = readmatrix('num.txt")
M = 4x4

81 63 95 95
90 10 96 49
13 28 16 80
91 55 97 15

Read only the rectangular block of data beginning from the second row, third column, in the file.
Create an import options object and specify the columns and rows to import using the
SelectedVariableNames and Datalines properties. Then, import the selected portion of the data
from the file.

opts = detectImportOptions('num.txt"');
opts.SelectedVariableNames = {'Var3', 'Var4d'};
opts.DatalLines = [2 4];
readmatrix('num.txt',opts)
ans = 3x2

96 49

16 80
97 15

See Also
readmatrix | readcell | readvars | readtimetable

More About
. “Import Text Files” on page 2-2

2-15

2 Text Files

Import Mixed Data from Text File into Table

This example shows how to use the readtable function to import mixed text and numeric data into a
table, specify the data types for the variables, and then append a new variable to the table.

Sample File Overview

The sample file, outages. csv, contains data representing electric utility outages in the US. The first
few lines of the file are:

Region,QutageTime, Loss,Customers,RestorationTime, Cause
SouthWest,2002-01-20 11:49,672,2902379,2002-01-24 21:58,winter storm
SouthEast,2002-01-30 01:18,796,336436,2002-02-04 11:20,winter storm
SouthEast,2004-02-03 21:17,264.9,107083,2004-02-20 03:37,winter storm
West,2002-06-19 13:39,391.4,378990,2002-06-19 14:27,equipment fault
Read Text File

Import the data using readtable and display the first five rows. The readtable function
automatically detects the delimiter and the variable types.

T = readtable('outages.csv');
head(T,5)

Region OutageTime Loss Customers RestorationTime Caust

{'SouthWest'} 2002-02-01 12:18 458.98 1.8202e+06 2002-02-07 16:50 {'winter st
{'SouthEast'} 2003-01-23 00:49 530.14 2.1204e+05 NaT {'winter st
{'SouthEast'} 2003-02-07 21:15 289.4 1.4294e+05 2003-02-17 08:14 {'winter st
{'West"' } 2004-04-06 05:44 434.81 3.4037e+05 2004-04-06 06:10 {'equipment
{'Midwest' } 2002-03-16 06:18 186.44 2.1275e+05 2002-03-18 23:23 {'severe st

Specify Variable Data Types Before Import

Updating the variable data types to the appropriate MATLAB® data types can benefit your data,
based on the type of variables in your file. For example, the first and sixth columns in outages.csv
are categorical. By designating these two columns as categorical arrays you can leverage MATLAB
functions for processing categorical data.

Designate and specify the data types of the variables in one of these ways:

* Specify the Format name-value pair in readtable

* Set the VariableTypes property of the import options for the file

Use the Format name-value pair to specify the variable data types, read the data, and display the
first five rows. In the %{yyyy-MM-dd HH:mm}D part of the formatSpec specifier, the text between

the curly braces describes the format of the date and time data. The values specified in Format
designate the:

2-16

Import Mixed Data from Text File into Table

» First and last columns in the file as categorical data

¢ Second and fifth columns as formatted date and time data

* Third and fourth columns as floating-point values

formatSpec = '%C%{yyyy-MM-dd HH:mm}D%f%

T = readtable('outages.csv', 'Format', formatSpec);

%{yyyy-MM-dd HH:mm}DS%C';

head(T,5)

Region OutageTime Loss Customers RestorationTime Cause
SouthWest 2002-02-01 12:18 458.98 1.8202e+06 2002-02-07 16:50 winter storm
SouthEast 2003-01-23 00:49 530.14 2.1204e+05 NaT winter storm
SouthEast 2003-02-07 21:15 289.4 1.4294e+05 2003-02-17 08:14 winter storm
West 2004-04-06 05:44 434.81 3.4037e+05 2004-04-06 06:10 equipment fault
MidWest 2002-03-16 06:18 186.44 2.1275e+05 2002-03-18 23:23 severe storm

Alternatively, specify the data types for the variables by using the setvartype function of the import
options. First, create an import options object for the file. The data file contains different types of
variables. Designate the first and last variables as categorical arrays, the second and fifth
variables as datetime arrays, and the remaining variables as double.

opts = detectImportOptions('outages.csv');

varNames = opts.VariableNames ;

varTypes = {'categorical', 'datetime', 'double’, ...
'double', 'datetime’, 'categorical'};

opts = setvartype(opts,varNames,varTypes);

Import the data using readtable with opts, and then display the first five rows.

T = readtable('outages.csv',opts);

head(T,5)

Region OutageTime Loss Customers RestorationTime Cause
SouthWest 2002-02-01 12:18 458.98 1.8202e+06 2002-02-07 16:50 winter storm
SouthEast 2003-01-23 00:49 530.14 2.1204e+05 NaT winter storm
SouthEast 2003-02-07 21:15 289.4 1.4294e+05 2003-02-17 08:14 winter storm
West 2004-04-06 05:44 434 .81 3.4037e+05 2004-04-06 06:10 equipment fault
MidWest 2002-03-16 06:18 186.44 2.1275e+05 2002-03-18 23:23 severe storm

Append New Variable to Table

Table T contains OutageTime and RestorationTime. Calculate the duration of each electrical
outage and append this data to the table.

T.Duration = T.RestorationTime - T.OutageTime;

head(T,5)

Region OutageTime Loss Customers RestorationTime Cause
SouthWest 2002-02-01 12:18 458.98 1.8202e+06 2002-02-07 16:50 winter storm
SouthEast 2003-01-23 00:49 530.14 2.1204e+05 NaT winter storm
SouthEast 2003-02-07 21:15 289.4 1.4294e+05 2003-02-17 08:14 winter storm

2-17

2 Text Files

West 2004-04-06 05:44 434 .81 3.4037e+05 2004-04-06 06:10 equipment fault
MidWest 2002-03-16 06:18 186.44 2.1275e+05 2002-03-18 23:23 severe storm

See Also

readtimetable | readtable | detectImportOptions | setvaropts | setvartype | preview |

head

More About

. “Create Tables and Assign Data to Them”

. “Import Dates and Times from Text Files” on page 2-10

. “Access Data in Tables”

2-18

Import Block of Mixed Data from Text File into Table or Cell Array

Import Block of Mixed Data from Text File into Table or Cell
Array

This example reads a block of mixed text and numeric data from a text file, and then imports the
block of data into a table or a cell array.

Data File Overview

The sample file bigfile.txt contains commented lines beginning with ##. The data is arranged in
five columns: The first column contains text indicating timestamps. The second, third, and fourth
columns contain numeric data indicating temperature, humidity and wind speed. The last column
contains descriptive text. Display the contents of the file bigfile. txt.

type('bigfile.txt")

A ID = 02476

YKZ Timestamp Temp Humidity Wind Weather

06-Sep-2013 01:00:00 6.6 89 4 clear
06-Sep-2013 05:00:00 5.9 95 1 clear
06-Sep-2013 09:00:00 15.6 51 5 mainly clear
06-Sep-2013 13:00:00 19.6 37 10 mainly clear
06-Sep-2013 17:00:00 22.4 41 9 mostly cloudy
06-Sep-2013 21:00:00 17.3 67 7 mainly clear
B ID = 02477

YVR Timestamp Temp Humidity Wind Weather

09-Sep-2013 01:00:00 15.2 91 8 clear
09-Sep-2013 05:00:00 19. 94 7 n/a
09-Sep-2013 09:00:00 18. 94 4 fog
09-Sep-2013 13:00:00 20. 81 15 mainly clear
09-Sep-2013 17:00:00 20. 77 17 n/a
09-Sep-2013 18:00:00 20. 75 17 n/a
09-Sep-2013 21:00:00 16. 90 25 mainly clear
C ID = 02478

YYZ Timestamp Temp Humidity Wind Weather

OO KU =

Import Block of Data as Table
To import the data as a table, use readtable with import options.

Create an import options object for the file using the detectImportOptions function. Specify the
location of the data using the DatalLines property. For example, lines 3 through 8 contain the first
block of data. Optionally, you can specify the names of the variables using the VariableNames
property. Finally import the first block of data using readtable with the opts object.

opts = detectImportOptions('bigfile.txt');

opts.DatalLines = [3 8];

opts.VariableNames = {'Timestamp', 'Temp',...
"Humidity', 'Wind', 'Weather'};

T first = readtable('bigfile.txt',opts)

T first=6x5 table
Timestamp Temp Humidity Wind Weather

06-Sep-2013 01:00:00 6.6 89 4 {'clear’ }

2-19

2 Text Files

06-Sep-2013 05:00:00 5.9 95 1 {'clear' }
06-Sep-2013 09:00:00 15.6 51 5 {'mainly clear' }
06-Sep-2013 13:00:00 19.6 37 10 {'mainly clear' }
06-Sep-2013 17:00:00 22.4 41 9 {'mostly cloudy'}
06-Sep-2013 21:00:00 17.3 67 7 {'mainly clear' }

Read the second block by updating the Datalines property to the location of the second block.

opts.DataLines = [11 17];
T second = readtable('bigfile.txt',opts)

T second=7x5 table

Timestamp Temp Humidity Wind Weather
09-Sep-2013 01:00:00 15.2 91 8 {'clear' }
09-Sep-2013 05:00:00 19.1 94 7 {'n/a’ }
09-Sep-2013 09:00:00 18.5 94 4 {'fog' }
09-Sep-2013 13:00:00 20.1 81 15 {'mainly clear'}
09-Sep-2013 17:00:00 20.1 77 17 {'n/a’' }
09-Sep-2013 18:00:00 20 75 17 {'n/a’ }
09-Sep-2013 21:00:00 16.8 90 25 {'mainly clear'}

Import Block of Data as Cell Array

You can import the data as a cell array using the readcell function with detectImportOptions,
or by using the textscan function. First import the block of data using the readcell function and
then perform the same import by using textscan.

To perform the import using the readcell function, create an import options object for the file using
the detectImportOptions function. Specify the location of the data using the Datalines property.
Then, perform the import operation using the readcell function and import options object opts.

opts = detectImportOptions('bigfile.txt');
opts.DataLines = [3 8]; % fist block of data
C = readcell('bigfile.txt',opts)

C=6x5 cell array

{[06-Sep-2013 01:00:00]} {[6.6000]} {[89]} {[41} {'clear' }
{[06-Sep-2013 05:00:00]} {[5.9000]} {[95]} {[11} {'clear' }
{[06-Sep-2013 09:00:00]} {[15.6000]1} {[51]} {[5]} {'mainly clear' }
{[06-Sep-2013 13:00:00]} {[19.6000]1} {[37]} {[10]} {'mainly clear' }
{[06-Sep-2013 17:00:00]} {[22.4000]1} {[41]} {[91} {'mostly cloudy'}
{[06-Sep-2013 21:00:00]} {[17.3000]1} {[67]} {[71} {'mainly clear' }

To perform the import using the textscan function, specify the size of block using N and the format
of the data fields using formatSpec. For example, use '%s' for text variables, '%D' for date and
time variables, or '%c' for categorical variables. Set the 'DatelLocale' name-value argument to
"en_US' to ensure that the names of the months are interpreted in English. Use fopen to open the
file. The function then returns a file identifier, fileID. Next, read from the file by using the
textscan function.

N = 6;

formatSpec = '%D %f %T %T %c';
fileID = fopen('bigfile.txt");

2-20

Import Block of Mixed Data from Text File into Table or Cell Array

Read the first block and display the contents of the variable Humidity.
C first = textscan(filelID, formatSpec,N, 'CommentStyle', '##', 'Delimiter','\t', 'DateLocale’', 'en US'
C first=1Ix5 cell array
{6x1 datetime} {6x1 double} {6x1 double} {6x1 double} {6x1 char}
C first{3}
ans = 6x1
89
NaN
95
NaN

51
NaN

Update the block size N, and read the second block. Display the contents of the fifth variable
Weather.

N=7;
C second = textscan(fileID,formatSpec,N, 'CommentStyle"', '##', 'Delimiter','\t', 'DatelLocale’, 'en US

C second=1x5 cell array
{7x1 datetime} {7x1 double} {7x1 double} {7x1 double} {7x1 char}

C second{5}

7x1 char array

Close the file.

fclose(filelID);

See Also
readcell | readtable | textscan | fopen | detectImportOptions

More About

. “Access Data in Cell Array”

. “Moving within a File” on page 4-10

2-21

2 Text Files

Write Data to Text Files

In this section...

“Export Table to Text File” on page 2-22
“Export Cell Array to Text File” on page 2-23

“Export Numeric Array to Text File” on page 2-24

Export tabular data contained in tables, cell arrays, or numeric arrays from the MATLAB workspace
to text files.

Export Table to Text File

You can export tabular data from MATLAB® workspace into a text file using the writetable
function. Create a sample table, write the table to text file, and then write the table to text file with
additional options.

Create a sample table, T, containing the variables Pitch, Shape, Price and Stock.

Pitch = [0.7;0.8;1;1.25;1.5];

Shape = {'Pan';'Round'; 'Button';'Pan'; 'Round'};
Price = [10.0;13.59;10.50;12.00;16.69];

Stock = [376;502;465;1091;562];

T = table(Pitch,Shape,Price,Stock)

T=5x4 table
Pitch Shape Price Stock
0.7 {'Pan' } 10 376
0.8 {'Round' } 13.59 502
1 {'Button'} 10.5 465
1.25 {'Pan' } 12 1091
1.5 {'Round' } 16.69 562

Export the table, T, to a text file named tabledata. txt. View the contents of the file. By default,
writetable writes comma-separated data, includes table variable names as column headings.

writetable(T, 'tabledata.txt');
type tabledata.txt

Pitch,Shape,Price,Stock
0.7,Pan,10,376
0.8,Round,13.59,502
1,Button,10.5,465
1.25,Pan,12,1091
1.5,Round, 16.69,562

Create a table T2 which includes row names using the RowNames name-value pair argument.

rowNames = {'M4';'M5"';'M6"';'M8"'; 'M10"'};
T2 = table(Pitch,Shape,Price,Stock, 'RowNames', rowNames)

2-22

Write Data to Text Files

T2=5x4 table

Pitch Shape Price Stock
M4 0.7 {'Pan' } 10 376
M5 0.8 {'Round' } 13.59 502
M6 1 {'Button'} 10.5 465
M8 1.25 {'Pan' } 12 1091
M10 1.5 {'Round"' } 16.69 562

Export T2 to a tab-delimited text file named tabledata2.txt. Use the Delimiter name-value pair
argument to specify a tab delimiter, and the WriteRowNames name-value pair argument to include
row names. View the contents of the file.

writetable(T2, 'tabledata2.txt', 'Delimiter', '\t', 'WriteRowNames', true);
type tabledata2.txt

Row Pitch Shape Price Stock
M4 0.7 Pan 10 376

M5 0.8 Round 13.59 502

M6 1 Button 10.5 465

M8 1.25 Pan 12 1091

M10 1.5 Round 16.69 562

Export Cell Array to Text File

You can export a cell array from MATLAB® workspace into a text file in one of these ways:

* Use the writecell function to export the cell array to a text file.
* Use fprintf to export the cell array by specifying the format of the output data.

Create a sample cell array C.

C = {'Atkins"',32,77.3,'M"; 'Cheng"',30,99.8,'F'; 'Lam',31,80.2,'M"'}
C = 3x4 cell array

{'Atkins'} {[321} {[77.3000]1} {'M"'}

{'Cheng"' } {[301} {[99.80001]1} {'F'}

{'Lam' } {[311} {[80.20001]1} {'M"'}

Export the cell array using writecell.
writecell(C, 'data.dat"')

View the contents of the file.

type data.dat

Atkins,32,77.3,M

Cheng,30,99.8,F

Lam,31,80.2,M

Alternatively, import the cell array using fprintf. Open a file that you can write to named
celldata.dat. Define formatSpec using the format specifiers to describe the pattern of the data in

2-23

2 Text Files

2-24

the file. Typical format specifiers include '%s' for a character vector, '%d' for an integer, or '%f"
for a floating-point number. Separate each format specifier with a space to indicate a space delimiter
for the output file. Include a newline character at the end of each row of data ('\n").

fileID = fopen('celldata.dat','w');

formatSpec =

‘9

55 %d %2.1T %s\n';

Determine the size of C and export one row of data at a time using the fprintf function. Then close
the file. fprintf writes a space-delimited file.

[nrows,ncols]

= size(C);

for row = l:nrows
fprintf(fileID, formatSpec,C{row,:});

end

fclose(filelID);

View the contents of the file.

type celldata.dat

Atkins 32 77.3 M
Cheng 30 99.8 F

Lam 31 80.2 M

Export Numeric Array to Text File

You can export a numerical array to a text file using writematrix.

Create a numeric array A.

A = magic(5)/10

A = 5x5
1.7000 2.4000
2.3000 0.5000
0.4000 0.6000
1.0000 1.2000
1.1000 1.8000

Write the numeric array to myData.dat and specify the delimiter to be

of the file.

writematrix (A, 'myData.dat', 'Delimiter',';")

type myData.dat

0.1000
0.7000
1.3000
1.9000
2.5000

0.8000
1.4000
2.0000
2.1000
0.2000

1.5000
1.6000
2.2000
0.3000
0.9000

; '. Then, view the contents

Write Data to Text Files

See Also
writematrix |writecell |writetimetable | fprintf | type|writetable

2-25

2 Text Files

Write to a Diary File

2-26

To keep an activity log of your MATLAB session, use the diary function. diary creates a verbatim
copy of your MATLAB session in a disk file (excluding graphics).

For example, if you have the array A in your workspace,

A=[11234,567381];

execute these commands at the MATLAB prompt to export this array using diary:

1

Turn on the diary function. Optionally, you can name the output file diary creates:

diary my data.out
Display the contents of the array you want to export. This example displays the array A. You could
also display a cell array or other MATLAB class:

A -
1 2 3 4
5 6 7 8
Turn off the diary function:

diary off

diary creates the file my data.out and records all the commands executed in the MATLAB
session until you turn it off:

A =
1 2 3 4
5 6 7

diary off
Open the diary file my data.out in a text editor and remove the extraneous text, if desired.

Read Collection or Sequence of Text Files

Read Collection or Sequence of Text Files

When your data is stored across multiple text files, you can use tabularTextDatastore to manage
and import the data. This example shows how to use tabularTextDatastore to read the data from
the collection of text files all together, or to read one file at a time.

Data

For this example, the folder C:\DataTxt contains a collection of text files. Capture this location in
the variable location. The data contains 10 text files, where each file contains 10 rows of data. The
results differ based on your files and data.

location = 'C:\DataTxt';
dir(location)

File0l.csv File@3.csv FileO5.csv File07.csv File09.csv
File02.csv FileO@4.csv FileO6.csv File08.csv FilelO.csv

Create Datastore

Create a datastore using the location of the files.
ds = tabularTextDatastore(location)

ds =
TabularTextDatastore with properties:

Files: {
"C:\DataTxt\FileOl.csv';
"C:\DataTxt\File02.csv';
"C:\DataTxt\File03.csv'

. and 7 more
}
FileEncoding: 'UTF-8'
AlternateFileSystemRoots: {}
ReadVariableNames: true
VariableNames: {'LastName', 'Gender', 'Age' ... and 7 more}
DatetimeLocale: en_US

Text Format Properties:
NumHeaderLines: 0
Delimiter: ','
RowDelimiter: '\r\n'
TreatAsMissing: ''
MissingValue: NaN

Advanced Text Format Properties:
TextscanFormats: {'%q', '%q', 'Ssf' ... and 7 more}
TextType: 'char'
ExponentCharacters: 'eEdD'
CommentStyle: "'
Whitespace: ' \b\t'
MultipleDelimitersAsOne: false

Properties that control the table returned by preview, read, readall:
SelectedVariableNames: {'LastName', 'Gender', 'Age' ... and 7 more}

2-27

2 Text Files

SelectedFormats: {'%q', '%q', '%f' ... and 7 more}
ReadSize: 20000 rows

Read Data from Datastore

Use the read or readall functions to import the data from the datastore. If the data from the
collection fits in the memory, you can import it all at once using the readall function.

allData = readall(ds);
size(allData)

ans = 1Ix2

100 10

Alternatively, import the data one file at a time using the read function. To control the amount of data

imported, before you call read, adjust the ReadSize property of the datastore. Set the ReadSize to

'file' or a positive integer.

* IfReadSizeis 'file', then each call to read reads all the data one file at a time.

* IfReadSize is a positive integer, then each call to read reads the number of rows specified by
ReadSize, or fewer, if it reaches the end of the data.

ds.ReadSize = 'file';
firstFile = read(ds) % reads first file

firstFile=10x10 table

LastName Gender Age Location Height Weight Smoker
'Smith’ 'Male' 38 ‘County General Hospital' 71 176 "TRUE'
'Johnson’ 'Male' 43 'VA Hospital' 69 163 'FALSE'
'Williams' 'Female’ 38 'St. Mary's Medical Center' 64 131 "FALSE'
"Jones’ 'Female' 40 '"VA Hospital' 67 133 "FALSE'
'Brown' 'Female’ 49 ‘County General Hospital' 64 119 "FALSE'
'Davis’ 'Female' 46 'St. Mary's Medical Center' 68 142 "FALSE'
'Miller' 'Female’ 33 'VA Hospital' 64 142 '"TRUE"
‘Wilson' ‘Male' 40 'VA Hospital' 68 180 'FALSE'
'Moore' 'Male' 28 'St. Mary's Medical Center' 68 183 "FALSE'
'Taylor' 'Female' 31 "County General Hospital' 66 132 "FALSE'

secondFile = read(ds) % reads second file

secondFile=10x10 table

LastName Gender Age Location Height Weight Smoker
"Anderson’ 'Female’ 45 'County General Hospital' 68 128 'FALSE'
'Thomas' 'Female' 42 'St. Mary's Medical Center' 66 137 "FALSE'
'Jackson’ 'Male' 25 '"VA Hospital' 71 174 '"FALSE'
'White' 'Male' 39 '"VA Hospital' 72 202 '"TRUE'
'Harris' 'Female' 36 'St. Mary's Medical Center' 65 129 "FALSE'
'Martin' 'Male' 48 '"VA Hospital' 71 181 '"TRUE'
'Thompson' 'Male' 32 'St. Mary's Medical Center' 69 191 'TRUE"
'Garcia' 'Female’ 27 'VA Hospital' 69 131 '"TRUE'

2-28

Read Collection or Sequence of Text Files

'Martinez' 'Male' 37 "County General Hospital' 70 179 "FALSE'
'Robinson’ 'Male' 50 "County General Hospital' 68 172 "FALSE'
See Also

readtable | readmatrix | readcell | readvars | readtimetable | tabularTextDatastore

More About
. “Read and Analyze Large Tabular Text File” on page 13-98

2-29

2 Text Files

Import Block of Numeric Data from Text File

This example shows how to read numeric data organized in blocks in a text file. Each block within the
file can have a different format. You can read all the blocks as cell arrays, one block at a time, using
textscan.

File Format Overview

The information in the sample text file, test80211. txt, is the result from a wireless network
communication quality test. The sample file consists of four lines of introduction followed by several
blocks of data. Each block represents a different environment (for example, mobile, indoor, outdoor)
and has the following format:

* Two header lines of description
* The text, Num SNR=, followed by a numeric value, m

* Numeric data organized in a table of m columns and an arbitrary number of rows (The data is
comma-delimited.)

* The text, *EOB, denoting the end of the block
For example, a block of data is formatted like this:
* Indoor2

* SNR Vs test No

Num SNR=3

,-5.00E+00,-4.00E+00,
1.00E+00,3.32E-07,9.12E-07
2.00E+00,1.49E-07,2.44E-07
3.00E+00,6.04E-07,2.53E-07
4.00E+00,1.53E-07,4.25E-07
5.00E+00,1.82E-07,1.83E-07
6.00E+00,6.27E-07,8.21E-07
7.00E+00,9.10E-08,1.53E-08
8.00E+00,8.73E-07,6.45E-07
9.00E+00,4.40E-07,1.33E-07

*EOB

The numeric data represents error rates over a range of noise levels for a number of independent
tests. The first column indicates the test number. To view the entire sample file, type at the command
line:

open test80211.txt

2-30

Import Block of Numeric Data from Text File

Open Text File for Reading

Open the file and create a file identifier.
fileID = fopen('test80211.txt','r");
Read Introduction Lines

Read the four introductory lines, which contain text delimited by a newline character. textscan
returns a 1-by-1 cell array containing a 4-by-1 cell array of character vectors.

Intro = textscan(filelID, '%s',4, 'Delimiter','\n"')

Intro = 1x1 cell array
{4x1 cell}

View the contents of the first cell.

disp(Intro{1})
{'*CcX! }
{'*CCX WiFi conformance test'}
{'*CCX BER Results' }
{'*CcX! }

Read Each Block

For each block, we want to read a header, the numeric value m, column headers for the data, then the
data itself. First, initialize the block index.

Block = 1;

Read each block of data in a while loop. The loop executes until the end of the file is reached and
~feof returns false. The textscan function returns the data in each block as a cell array named
InputText. Convert each cell array to a numeric array using cell2mat and store the numeric array
in a cell array named Data. A cell array allows the storage of different size blocks.

while (~feof(filelID)) For each block:

o°

o°

fprintf('Block: %s\n', num2str(Block)) Print block number to the screen
InputText = textscan(filelD, '%s',2, 'delimiter','\n'); % Read 2 header lines
HeaderLines{Block,1} = InputText{l};
disp(HeaderLines{Block});

o°

Display header lines

Read the numeric value
following the text, Num SNR =
Specify that this is the
number of data columns

InputText = textscan(fileID, 'Num SNR = %f');

NumCols = InputText{l};

d° o° o° o°

FormatString = repmat('sf',1,NumCols); Create format string
based on the number
of columns

Read data block

d° o° o° o°

InputText = textscan(fileID,FormatString,
'delimiter',"',"');

Data{Block,1} = cell2mat(InputText);

[NumRows ,NumCols] = size(Data{Block}); Determine size of table

o°

2-31

2 Text Files

2-32

disp(cellstr(['Table data size: ' ...

num2str(NumRows) '
disp(' ");
eob = textscan(filelD,
Block = Block+1;
end
Block: 1
{'* Mobilel'
{'* SNR Vs test
{'Table data size: 30
Block: 2
{'* Mobile2'
{'* SNR Vs test
{'Table data size: 30
Block: 3
{'* Mobile3'
{'* SNR Vs test
{'Table data size: 31
Block: 4
{'* Mobile4'
{'* SNR Vs test
{'Table data size: 28
Block: 5
{'* Mobile5'
{'* SNR Vs test
{'Table data size: 32
Block: 6
{'* Mobile6'
{'* SNR Vs test
{'Table data size: 30
Block: 7

x ' num2str(NumCols)]));

'%s',1, 'delimiter','\n');

No'}
x 19'}

No'}
X 9'}

No'}
x 15'}

No'}
x 19'}

No'}
x 18'}

No'}
x 19'}

% New line

)
©

% Read and discard end-of-block marker
Increment block index

Import Block of Numeric Data from Text File

{1
{1

{'Table

Block: 8

{'*
{'*

{'Table

Block: 9

{1
{1

{'Table

Block: 10

{1
{1

{'Table

Block: 11

{'*
{'*

{'Table

Block: 12

{1
{1

{'Table

Block: 13

{1
{1

{'Table

Block: 14

Mobile7'
SNR Vs test

data size: 30

Mobile8'
SNR Vs test

data size: 20

Indoor0@'
SNR Vs test

}
No'}

x 11'}

}
No'}

x 18'}

}
No'}

data size: 9 x 3'}

Indoorl'
SNR Vs test

data size: 22

Indoor2'
SNR Vs test

data size: 25

Indoor3'
SNR Vs test

data size: 21

Outdoorl'
SNR Vs test

data size: 20

}
No'}

X 6'}

No'}
x 3'}

No'}
x 18'}

No'}
x 18'}

2-33

2 Text Files

{'* OQutdoor2' }
{'* SNR Vs test No'}

{'Table data size: 23 x 3'}

Block: 15
{'* Outdoor3' }
{'* SNR Vs test No'}

{'Table data size: 22 x 18'}

Block: 16
{'* Outdoor4' }
{'* SNR Vs test No'}

{'Table data size: 21 x 18'}

Block: 17
{'* Outdoor5' }
{'* SNR Vs test No'}

{'Table data size: 18 x 5'}

Close Text File
fclose(filelD);
Total Number of Blocks

Determine the number of blocks in the file.

NumBlocks Block-1

NumBlocks = 17

View Numeric Data

Display the numeric data in one of the blocks using short scientific notation.

First, store the current Command Window output display format.
user_format = get(0, 'format');

Change the display format to short scientific notation.

format shortE

Display the header lines for the ninth block and the numeric data.

Block = 9;
disp(HeaderLines{Block});

2-34

Import Block of Numeric Data from Text File

{'* Indoor0' }

{'* SNR Vs test No'}
fprintf('SNR %d %d\n',Data{Block,1}(1,2:end))
SNR -7 -6

disp(Data{Block,1}(2:end,2:end));

9.0600e-07 6.7100e-07
3.1700e-07 3.5400e-07
2.8600e-07 1.9600e-07
1.4800e-07 7.3400e-07
3.9500e-08 9.6600e-07
7.9600e-07 7.8300e-07
4.0000e-07 8.8100e-07
3.0100e-07 2.9700e-07

Restore the original Command Window output display format.

set(0, 'format', user format);

See Also
textscan

More About
. “Import Block of Mixed Data from Text File into Table or Cell Array” on page 2-19

2-35

Spreadsheets

* “Import Spreadsheets” on page 3-2

* “Read Spreadsheet Data Using Import Tool” on page 3-4

* “Read Spreadsheet Data into Array or Individual Variables” on page 3-7
* “Read Spreadsheet Data into Table” on page 3-9

* “Read Collection or Sequence of Spreadsheet Files” on page 3-12

* “Write Data to Excel Spreadsheets” on page 3-15

* “Define Import Options for Tables” on page 3-18

3 Spreadsheets

Import Spreadsheets

Spreadsheets often contain a mix of numeric and text data as well as variable and row names, which
is best represented in MATLAB as a table. You can import data into a table using the Import Tool or

the readtable function.

Import Spreadsheet Data Using the Import Tool

The Import Tool allows you to import into a table or other data type. For example, read data from
the sample spreadsheet file patients.xls as a table in MATLAB. Open the file using the Import
Tool and select options such as the range of data and the output type. Then, click the Import

Selection button

IMPORT

4

to import the data into the MATLAB workspace.

e GESIIETOR) o

3-2

Import Spreadsheet Data Using readtable

Alternatively, you can read spreadsheet data into a table using the readtable function with the file

name, for example:

T = readtable('patients.xls');

You can also select the range of data to import by specifying the range parameter. For example, read
the first five rows and columns of the spreadsheet. Specify the range in Excel notation as 'Al:E5".

T = readtable('patients.xls', 'Range', 'Al:E5")

Range: W ?E?iu:;l:pe- - V
Variable Names Row: 1 : 1 Table WIHFORTABLE CELLS Impc_)rt
Y column vectors - N .
SELECTION FH Numeric Matrix IMPORT Y
| patientsxs | 1] String Array
A B [{1] Cell Array _ = . G
patients
LastName Gender Age Location Height Weight Smol
Text - Categorical ~MNumber - Categorical ~MNumber - MNumber v Text
1 |LastName |Gender Age Location Height Weight Smoker ™
2 |Smith Male 38|County Gen... 71 176
3 Pohnson Male 43|\VA Hospital 69| 163
4 Williams Female 38(St. Mary's ... 64 131
5 ones Female 40| VA Hospital 67 133
& [Brown Female 49| County Gen... 64 119
7 |Davis Female 46|5t. Mary's ... 68 142
8 [Miller Female 33|\VA Hospita 64 142 W
< >
Sheetl

Import Spreadsheets

4x5 table

LastName Gender Age Location

'Smith' } {'Male' } 38
'Johnson' } {'Male' } 43
'Williams'} {'Female'} 38
'Jones’ } {'Female'} 40

e LR

Import Spreadsheet Data as Other Data Types

Height
{'County General Hospital' } 71
{'VA Hospital' } 69
{'St. Mary's Medical Center'} 64
{'VA Hospital' } 67

In addition to tables, you can import your spreadsheet data into the MATLAB workspace as a
timetable, a numeric matrix, a cell array, or separate column vectors. Based on the data type you

need, use one of these functions.

Data Type of Output

Function

Timetable

readtimetable

Numeric Matrix

readmatrix

Cell Array

readcell

Separate Column Vectors

readvars

See Also
Import Tool | readtable

More About

. “Read Spreadsheet Data Using Import Tool” on page 3-4

. “Read Spreadsheet Data into Table” on page 3-9

. “Access Data in Tables”

3-3

3 Spreadsheets

Read Spreadsheet Data Using Import Tool

3-4

In this section...

“Select Data Interactively” on page 3-4
“Import Data from Multiple Spreadsheets” on page 3-5

“Paste Data from Clipboard” on page 3-6

This example shows how to import data from a spreadsheet into the workspace using the Import Tool
and also to import data from the clipboard.

Select Data Interactively

On the Home tab, in the Variable section, click Import Data I&I Alternatively, in the Current
Folder browser, double-click the name of a file with an extension of . x1s, .x1sx, .xlsb, or .x1lsm.
The Import Tool opens.

Select the data you want to import. For example, the data in the following figure corresponds to data
for three column vectors. You can edit the variable name within the tab, and you can select
noncontiguous sections of data for the same variable.

A B C
Station Temp Date
Number ¥ Number * Datetime ™
1 |Station Temp |DatE |
2 12 |Replaced h}r:NaNEI
3 13)NaN | 10/23/2013)
4 14 “So7| 12/1/2013]

On the Import tab, in the Output Type section, select how you want the data to be imported. The
option you select dictates the data type of the imported data.

Option Selected How Data Is Imported

Column vectors Import each column of the selected data as an
individual m-by-1 vector.

Numeric Matrix Import selected data as an m-by-n numeric array.

String Array Import selected data as an m-by-n string array.

Cell Array Import selected data as a cell array that can
contain multiple data types, such as numeric data
and text.

Table Import selected data as a table.

If you choose to import the data as a matrix or as numeric column vectors, the tool highlights any
nonnumeric data in the worksheet. Each highlight color corresponds to a proposed rule to make the
data fit into a numeric array. For example, you can replace nonnumeric values with NaN. Also, you can
see how your data will be imported when you place the cursor over individual cells.

Read Spreadsheet Data Using Import Tool

[Replace * unimpoertable cells with = MNalM - +

a

UMIMPORTABLE CELLS

You can add, remove, reorder, or edit rules, such as changing the replacement value from NaN to
another value. All rules apply to the imported data only and do not change the data in the file. Specify
rules any time the range includes nonnumeric data and you are importing into a matrix or numeric
column vectors.

Any cells that contain #Error? correspond to formula errors in your spreadsheet file, such as
division by zero. The Import Tool regards these cells as nonnumeric.

V4

When you click the Import Selection button
workspace.

, the Import Tool creates variables in your

For more information on interacting with the Import Tool, watch this video.

Import Data from Multiple Spreadsheets

If you plan to perform the same import operation on multiple files, you can generate code from the
Import Tool to make it easier to repeat the operation. On all platforms, the Import Tool can generate a
program script that you can edit and run to import the files. On Microsoft Windows systems with
Excel software, the Import Tool can generate a function that you can call for each file.

For example, suppose that you have a set of spreadsheets in the current folder named
myfile0l.x1sx through myfile25.x1sx, and you want to import the same range of data,
A2:G100, from the first worksheet in each file. Generate code to import the entire set of files as
follows:

Open one of the files in the Import Tool.
2 From the Import Selection button, select Generate Function. The Import Tool generates code
similar to the following excerpt, and opens the code in the Editor.

function data = importfile(workbookFile, sheetName, range)
%IMPORTFILE Import numeric data from a spreadsheet

3 Save the function.

In a separate program file or at the command line, create a for loop to import data from each
spreadsheet into a cell array named myData:

numFiles = 25;

range 'A2:G100';

sheet 1;

myData = cell(1l,numFiles);

for fileNum = 1l:numFiles
fileName = sprintf('myfile%s02d.xlsx"',fileNum);
myData{fileNum} = importfile(fileName, sheet, range);
end

https://www.mathworks.com/videos/importing-spreadsheets-into-matlab-101491.html

3 Spreadsheets

3-6

Each cell in myData contains an array of data from the corresponding worksheet. For example,
myData{1l} contains the data from the first file, m\yfile01.x1sx.

Paste Data from Clipboard

In addition to importing data interactively, you can also paste spreadsheet data from the clipboard
into MATLAB.

First, select and copy your spreadsheet data in Microsoft Excel, then use one of the following
methods:

On the Workspace browser title bar, click ¥, and then select Paste.
* Open an existing variable in the Variables editor, right-click, and then select Paste Excel Data.
* Calluiimport -pastespecial.

See Also
readmatrix | readcell | readvars | readtable | detectImportOptions

More About

. “Define Import Options for Tables” on page 3-18
. “Read Spreadsheet Data into Array or Individual Variables” on page 3-7

Read Spreadsheet Data into Array or Individual Variables

Read Spreadsheet Data into Array or Individual Variables

The best way to represent spreadsheet data in MATLAB® is in a table, which can store a mix of
numeric and text data. However, sometimes you need to import spreadsheet data as a matrix, a cell
array, or separate variables. Based on your data and the data type you need in the MATLAB®
workspace, use one of these functions:

* readmatrix — Import homogeneous numeric or text data as a matrix.
* readcell — Import mixed numeric and text data as a cell array.
* readvars — Import spreadsheet columns as separate variables.

Read Spreadsheet Data into Matrix

Import numeric data from basic matrix.x1ls into a matrix.

M = readmatrix('basic matrix.xls")

M = 5x4
6 8 3 1
5 4 7 3
1 6 7 10
4 2 8 2
2 7 5 9

You can also select the data to import from the spreadsheet by specifying the Sheet and Range
parameters. For example, specify the Sheet parameter as 'Sheetl' and the Range parameter as
'B1:D3'. The readmatrix function reads a 3-by-3 subset of the data, starting at the element in the
first row and second column of the sheet named 'Sheetl'.

M = readmatrix('basic matrix.xls', 'Sheet', 'Sheetl', 'Range', 'B1:D3"')

M = 3x3
8 3 1
4 7 3
6 7 10

Read Spreadsheet Data into Cell Array

Import the mixed tabular data from airlinesmall subset.xlsx into a cell array.

C = readcell('airlinesmall subset.xlsx');

whos C
Name Size Bytes C(lass Attributes
C 1339x29 4277290 cell

You can also select the data to import from the spreadsheet by specifying the Sheet and Range
parameters. For example, specify the Sheet parameter as '2007' and the Range parameter as
'G2:I11'. The readcell function imports ten rows of data for variables in columns 7, 8, and 9,
from the worksheet named '2007"'.

3 Spreadsheets

3-8

subC = readcell('airlinesmall subset.xlsx','Sheet', '2007', 'Range','G2:I11")

subC=10x3 cell array

{[935]}
10411}

{[935

[N e e N e e e WS ey

"N
"N
"N
"N
"N
"N
"N
"N
"N
"N

e e e e e e e e

Read Spreadsheet Data Columns as Separate Variables

Import the first three columns from airlinesmall subset.xlsx as separate workspace variables.

[Year,Month,DayOfMonth]

Name

DayOfMonth
Month
Year

Size

1338x1
1338x1
1338x1

readvars('airlinesmall subset.xlsx');
whos Year Month DayOfMonth

Class Attributes

double
double
double

You can also select which subset to import from the spreadsheet by specifying the Sheet and Range
parameters. For example, import ten rows of the column DayOfMonth from the worksheet named
'2004"'. Specify the column and number of rows using the Range parameter.

DayOfMonth

DayOfMonth

26
10
21
24
20
20

1

2
30
11

See Also

readtable | readmatrix | readcell | readvars

readvars('airlinesmall subset.xlsx', 'Sheet', '2004', 'Range','C2:C11")

10x1

More About
. “Read Spreadsheet Data Using Import Tool” on page 3-4

. “Read Spreadsheet Data into Table” on page 3-9

. “Read Collection or Sequence of Spreadsheet Files” on page 3-12

Read Spreadsheet Data into Table

Read Spreadsheet Data into Table

The best way to represent spreadsheet data in MATLAB® is in a table, which can store a mix of
numeric and text data, as well as variable and row names. You can read data into tables interactively
or programmatically. To interactively select data, click Import Data on the Home tab, in the
Variable section. To programmatically import data, use one of these functions:

* readtable — Read a single worksheet.
* spreadsheetDatastore — Read multiple worksheets or files.

This example shows how to import spreadsheet data programmatically using both functions. The
sample data, airlinesmall subset.xlsx, contains one sheet for each year between 1996 and
2008. The sheet names correspond to the year, such as 2003.

Read All Data from Worksheet

Call readtable to read all the data in the worksheet called 2008, and then display only the first 10
rows and columns. Specify the worksheet name using the Sheet name-value pair argument. If your
data is on the first worksheet in the file, you do not need to specify Sheet.

T = readtable('airlinesmall subset.xlsx', 'Sheet', '2008"');
T(1:10,1:10)

ans=10x10 table
Year Month DayofMonth DayOfWeek DepTime CRSDepTime ArrTime CRSArrTime

2008 1 3 4 1012 1010 1136 1135
2008 1 4 5 1303 1300 1411 1415
2008 1 6 7 2134 2115 2242 2220
2008 1 7 1 1734 1655 54 30
2008 1 8 2 1750 1755 2018 2035
2008 1 9 3 640 645 855 905
2008 1 10 4 1943 1945 2039 2040
2008 1 11 5 1303 1305 1401 1400
2008 1 13 7 1226 1230 1415 1400
2008 1 14 1 1337 1340 1623 1630

Read Selected Range from Specific Worksheet

From the worksheet named 1996, read only 10 rows of data from the first 5 columns by specifying a
range, 'Al:E11'. The readtable function returns a 10-by-5 table.

T selected = readtable('airlinesmall subset.xlsx', 'Sheet','1996', 'Range', 'Al:E11")

T selected=10x5 table
Year Month DayofMonth DayOfWeek DepTime

1996 1 18 4 2117
1996 1 12 5 1252
1996 1 16 2 1441
1996 1 1 1 2258
1996 1 4 4 1814

3-9

3 Spreadsheets

3-10

1996 1 31 3 1822
1996 1 18 4 729
1996 1 26 5 1704
1996 1 11 4 1858
1996 1 7 7 2100

Convert Variables to Datetimes, Durations, or Categoricals

During the import process, readtable automatically detects the data types of the variables.
However, if your data contains nonstandard dates, durations, or repeated labels, then you can convert
those variables to their correct data types. Converting variables to their correct data types lets you
perform efficient computations and comparisons and improves memory usage. For instance,
represent the variables Year, Month, and DayofMonth as one datetime variable, the
UniqueCarrier as categorical, and ArrDelay as duration in minutes.

data = T(:,{'Year', 'Month', 'DayofMonth', 'UniqueCarrier', 'ArrDelay'});
data.Date = datetime(data.Year,data.Month,data.DayofMonth);
data.UniqueCarrier = categorical(data.UniqueCarrier);

data.ArrDelay = minutes(data.ArrDelay);

Find the day of the year with the longest delay, and then display the date.

ind = find(data.ArrDelay == max(data.ArrDelay));
data.Date(ind)

ans = datetime
07-Apr-2008

Read All Worksheets from Spreadsheet File

A datastore is useful for processing arbitrarily large amounts of data that are spread across multiple
worksheets or multiple spreadsheet files. You can perform data import and data processing through
the datastore.

Create a datastore from the collection of worksheets in airlinesmall subset.x1lsx, select the
variables to import, and then preview the data.

ds = spreadsheetDatastore('airlinesmall subset.xlsx');
ds.SelectedVariableNames = {'Year', 'Month', 'DayofMonth', 'UniqueCarrier', 'ArrDelay'};
preview(ds)

ans=8x5 table
Year Month DayofMonth UniqueCarrier ArrDelay

1996 1 18 {'HP'} 6
1996 1 12 {'HP'} 11
1996 1 16 {'HP'} -13
1996 1 1 {'HP'} 1
1996 1 4 {'US'} -9
1996 1 31 {'Us'} 9
1996 1 18 {'Us'} -2
1996 1 26 {'NW'} -10

Read Spreadsheet Data into Table

Before importing data, you can specify what data types to use. For this example, import
UniqueCarrier as a categorical variable.

ds.SelectedVariableTypes(4) = {'categorical'};

Import data using the readall or read functions. The readall function requires that all the data
fit into memory, which is true for the sample data. After the import, compute the maximum arrival
delay for this dataset.

alldata = readall(ds);
max(alldata.ArrDelay)/60

ans = 15.2333

For large data sets, import portions of the file using the read function. For more information, see
Read Collection or Sequence of Spreadsheet Files.

See Also
readtable | spreadsheetDatastore

More About

. “Read Spreadsheet Data Using Import Tool” on page 3-4
. “Read Spreadsheet Data into Array or Individual Variables” on page 3-7
. “Read Collection or Sequence of Spreadsheet Files” on page 3-12

3-11

3 Spreadsheets

Read Collection or Sequence of Spreadsheet Files

3-12

When you have data stored across multiple spreadsheet files, use spreadsheetDatastore to
manage and import the data. After creating the datastore, you can read all the data from the

collection simultaneously, or you can read one file at a time.

Data

If the folder C:\Data contains a collection of spreadsheet files, then capture the location of the data
in Location. The data used in this example contains 10 spreadsheet files, where each file contains

10 rows of data. Your results will differ based on your files and data.

location = 'C:\Data';
dir(location)
File0l.x1ls File02.xls File03.xls File04.x1s
Create Datastore
Create a datastore using the location of the files.
ds = spreadsheetDatastore(location)
ds =
SpreadsheetDatastore with properties:
Files: {
"C:\Data\File0l.x1ls"';
"C:\Data\File02.x1ls"';
'C:\Data\File03.xls"
... and 7 more
}
AlternateFileSystemRoots: {}
Sheets: ''
Range: "'
Sheet Format Properties:
NumHeaderLines: 0
ReadVariableNames: true
VariableNames: {'LastName', 'Gender', 'Age' ... and 7 more}
VariableTypes: {'char', 'char', 'double' ... and 7 more}
Properties that control the table returned by preview, read, readall:
SelectedVariableNames: {'LastName', 'Gender', 'Age' ... and 7 more}

SelectedVariableTypes: {'char', 'char', 'double' ... and 7 more}
ReadSize: 'file'

Read Data from Datastore

Use the read or readall functions to import the data from the datastore. If the data from the
collection fits in the memory, then you can import it all at once using the readall function.

allData = readall(ds);
size(allData)

File05.x1ls File06.x1s

Read Collection or Sequence of Spreadsheet Files

ans = 1Ix2

100 10

Alternatively, you can import the data one file at a time using the read function. To control the
amount of data imported, before you call read, adjust the ReadSize property of the datastore. You
can set the ReadSizeto 'file', 'sheet’, or a positive integer.

« IfReadSizeis 'file’', then each call to read returns data one file at a time.

¢« IfReadSizeis 'sheet', then each call to read returns data one sheet at a time.

* IfReadSize is a positive integer, then each call to read returns the number of rows specified by
ReadSize, or fewer if it reaches the end of the data.

ds.ReadSize = 'file';
firstFile = read(ds) % reads first file

firstFile=10x10 table

LastName Gender
'Smith' 'Male'
'Johnson' 'Male'
'Williams' 'Female'
'Jones' 'Female'
'Brown' 'Female'
'Davis’ 'Female'
'Miller' 'Female'
'Wilson' 'Male'
'Moore' 'Male'
'Taylor' 'Female’

secondFile = read(ds) % reads

secondFile=10x10 table

LastName Gender
'"Anderson' 'Female'
'"Thomas' 'Female'
'Jackson' 'Male'
'White' 'Male'
'Harris' 'Female'
'Martin' 'Male'
'Thompson' 'Male'
'Garcia' 'Female'
'Martinez' 'Male'
'Robinson' 'Male'
See Also

readtable | spreadsheetDatastore

Location Height Weight Smoker
'"County General Hospital' 71 176 "true'
'VA Hospital' 69 163 'false'
'St. Mary's Medical Center' 64 131 'false'
'VA Hospital' 67 133 'false'
"County General Hospital' 64 119 'false'
'St. Mary's Medical Center' 68 142 'false'
'VA Hospital' 64 142 "true'
'VA Hospital' 68 180 'false'
'St. Mary's Medical Center' 68 183 'false'
'"County General Hospital' 66 132 'false'
file

Location Height Weight Smoker
'"County General Hospital' 68 128 'false'
'St. Mary's Medical Center' 66 137 'false'
'VA Hospital' 71 174 'false'
'VA Hospital' 72 202 "true'
'St. Mary's Medical Center' 65 129 'false'
'VA Hospital' 71 181 "true'
'St. Mary's Medical Center' 69 191 "true'
'VA Hospital' 69 131 "true'
'County General Hospital' 70 179 'false'
'"County General Hospital' 68 172 'false'

3-13

3 Spreadsheets

More About
. “Read Spreadsheet Data into Table” on page 3-9

3-14

Write Data to Excel Spreadsheets

Write Data to Excel Spreadsheets

In this section...

“Write Tabular Data to Spreadsheet File” on page 3-15

“Write Numeric and Text Data to Spreadsheet File” on page 3-15
“Disable Warning When Adding New Worksheet” on page 3-16
“Format Cells in Excel Files” on page 3-16

Write Tabular Data to Spreadsheet File

To export a table in the workspace to a Microsoft® Excel® spreadsheet file, use the writetable
function. You can export data from the workspace to any worksheet in the file, and to any location
within that worksheet. By default, writetable writes your table data to the first worksheet in the
file, starting at cell Al.

For example, create a sample table of column-oriented data and display the first five rows.

load patients.mat
T = table(LastName,Age,Weight, Smoker);

T(1:5,:)
ans=5x4 table
LastName Age Weight Smoker

{'Smith' } 38 176 true
{'Johnson' } 43 163 false
{'Williams'} 38 131 false
{'Jones" } 40 133 false
{'Brown' } 49 119 false

Write table T to the first sheet in a new spreadsheet file named patientdata.xlsx, starting at cell
D1. To specify the portion of the worksheet you want to write to, use the Range name-value pair
argument. By default, writetable writes the table variable names as column headings in the
spreadsheet file.

filename = 'patientdata.xlsx';
writetable(T, filename, 'Sheet',1, 'Range', 'D1")

Write the table T without the variable names to a new sheet called 'MyNewSheet'. To write the data
without the variable names, specify the name-value pair WriteVariableNames as false.

writetable(T, filename, 'Sheet', 'MyNewSheet', 'WriteVariableNames', false);

Write Numeric and Text Data to Spreadsheet File
To export a numeric array and a cell array to a Microsoft Excel spreadsheet file, use the

writematrix orwritecell functions. You can export data in individual numeric and text
workspace variables to any worksheet in the file, and to any location within that worksheet. By

3-15

3 Spreadsheets

3-16

default, the import functions write your matrix data to the first worksheet in the file, starting at cell
Al.

For example, create a sample array of numeric data, A, and a sample cell array of text and numeric
data, C.

A = magic(5)
C={'Time', 'Temp'; 12 98; 13 'x'; 14 97}
A =
17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9
C =
'"Time' '"Temp'
[12] [98]
[13] "x'
[14] [97]

Write array A to the 5-by-5 rectangular region, E1: I5, on the first sheet in a new spreadsheet file
named testdata.xlsx.

filename = 'testdata.xlsx';
writematrix (A, filename, 'Sheet',1, 'Range', 'E1:I5")

Write cell array C to a rectangular region that starts at cell B2 on a worksheet named
Temperatures. You can specify range using only the first cell.

writecell(C, filename, 'Sheet', 'Temperatures', 'Range', 'B2');

writecell displays a warning because the worksheet, Temperatures, did not previously exist, but
you can disable this warning.

Disable Warning When Adding New Worksheet

If the target worksheet does not exist in the file, then the writetable and writecell functions
display this warning:

Warning: Added specified worksheet.

For information on how to suppress warning messages, see “Suppress Warnings”.

Format Cells in Excel Files

To write data to Excel files on Windows systems with custom formats (such as fonts or colors), access
the COM server directly using actxserver rather than writetable, writetimetable,
writematrix, or writecell. For example, Technical Solution 1-QLD4K uses actxserver to
establish a connection between MATLAB and Excel, write data to a worksheet, and specify the colors
of the cells.

https://www.mathworks.com/matlabcentral/answers/102070-how-do-i-write-data-to-an-excel-spreadsheet-with-a-custom-cell-background-color-and-custom-font-colo

Write Data to Excel Spreadsheets

For more information, see “Get Started with COM”.

See Also
writematrix |writecell |writetable

3-17

3 Spreadsheets

Define Import Options for Tables

3-18

Typically, you can import tables using the readtable function. However, sometimes importing
tabular data requires additional control over the import process. For example, you might want to
select the variables to import or handle rows with missing or error-causing data. To control the
import process, you can create an import options object. The object has properties that you can
adjust based on your import needs.

Create Import Options

To create an import options object for a sample data set, airlinesmall.csv, use the
detectImportOptions function. The detectImportOptions function creates a
DelimitedTextImportOptions object for this text file. For a full list of properties of the import
options object, see the detectImportOptions reference page.

opts = detectImportOptions('airlinesmall.csv');

Customize Table-Level Import Options

The import options object has properties that you can adjust to control the import process. Some
properties apply to the entire table while others apply to specific variables. Properties that affect the
entire table include rules to manage error-causing or missing data. For example, remove rows with
data that cause import errors by setting the ImportErrorRule to 'omitrow'. Replace missing
values by setting the MissingRule to 'fill'. The FillValue property value determines what
value replaces the missing values. For example, you can replace missing values with NaN.

opts.ImportErrorRule = 'omitrow';
opts.MissingRule = 'fill"';

Customize Variable-Level Import Options

To get and set options for specific variables use the getvaropts, setvartype, and setvaropts
functions. For example, view the current options for the variables named FlightNum, Origin, Dest,
and ArrDelay, using the getvaropts function.

getvaropts(opts, {'FlightNum', 'Origin', 'Dest', "ArrDelay'});
Change the data types for the variables using the setvartype function:

* Since the values in the variable FlightNum are identifiers for the flight and not numerical values,
change its data type to char.

» Since the variables Origin and Dest designate a finite set of repeating text values, change their
data type to categorical.

opts = setvartype(opts,{'FlightNum', 'Origin', 'Dest', "ArrDelay'}, ...
{'char', 'categorical', 'categorical', 'single'});

Change other properties using the setvaropts function:

* For the FlightNum variable, remove any leading white spaces from the text by setting the
WhiteSpaceRule property to trimleading.

» For the ArrDelay variable, replace fields containing @ or NA with the value specified in
FillValue property by setting the TreatAsMissing property.

Define Import Options for Tables

opts = setvaropts(opts, 'FlightNum', 'WhitespaceRule', 'trimleading');
opts = setvaropts(opts, 'ArrDelay', 'TreatAsMissing',{'0"', 'NA'});
Import Table

Specify the variables to get, import them using readtable, and display the first 8 rows of the table.

opts.SelectedVariableNames = {'FlightNum', 'Origin', 'Dest', 'ArrDelay'};
T = readtable('airlinesmall.csv',opts);
T(1:8,:)

ans=8x4 table
FlightNum Origin Dest ArrDelay

{'1503"'} LAX SJC 8
{'1550"'} SJC BUR 8
{'1589'} SAN SMF 21
{'1655"'} BUR SJC 13
{'1702"'} SMF LAX 4
{'1729'} LAX SJC 59
{'1763"'} SAN SFO 3
{'1800"'} SEA LAX 11
See Also

detectImportOptions | getvaropts | setvaropts | setvartype | readtable |
SpreadsheetImportOptions | DelimitedTextImportOptions | readmatrix | readcell |
readvars

More About

. “Read Spreadsheet Data Using Import Tool” on page 3-4
. “Read Spreadsheet Data into Table” on page 3-9

3-19

Low-Level File 1/0

* “Import Text Data Files with Low-Level I/O” on page 4-2

* “Import Binary Data with Low-Level I/O” on page 4-8

+ “Export to Text Data Files with Low-Level I/0” on page 4-13
« “Export Binary Data with Low-Level I/O” on page 4-18

4 Low-Level File I/O

Import Text Data Files with Low-Level I/0

4-2

In this section...

“Overview” on page 4-2

“Reading Data in a Formatted Pattern” on page 4-2

“Reading Data Line-by-Line” on page 4-4

“Testing for End of File (EOF)” on page 4-5

“Opening Files with Different Character Encodings” on page 4-7

Overview

Low-level file I/O functions allow the most control over reading or writing data to a file. However,
these functions require that you specify more detailed information about your file than the easier-to-
use high-level functions, such as importdata. For more information on the high-level functions that
read text files, see “Import Text Files” on page 2-2.

If the high-level functions cannot import your data, use one of the following:
» fscanf, which reads formatted data in a text or ASCII file; that is, a file you can view in a text

editor. For more information, see “Reading Data in a Formatted Pattern” on page 4-2.

+ fgetl and fgets, which read one line of a file at a time, where a newline character separates
each line. For more information, see “Reading Data Line-by-Line” on page 4-4.

+ fread, which reads a stream of data at the byte or bit level. For more information, see “Import
Binary Data with Low-Level I/O” on page 4-8.

For additional information, see:

» “Testing for End of File (EOF)” on page 4-5
* “Opening Files with Different Character Encodings” on page 4-7

Note The low-level file I/O functions are based on functions in the ANSI® Standard C Library.
However, MATLAB includes vectorized versions of the functions, to read and write data in an array
with minimal control loops.

Reading Data in a Formatted Pattern

To import text files that importdata and textscan cannot read, consider using fscanf. The
fscanf function requires that you describe the format of your file, but includes many options for this
format description.

For example, create a text file mymeas.dat as shown. The data in mymeas . dat includes repeated
sets of times, dates, and measurements. The header text includes the number of sets of
measurements, N:

Measurement Data
N=3

12:00:00

Import Text Data Files with Low-Level I/O

01-Jan-1977

4.21 6.55 6.78 6.55
9.15 0.35 7.57 NaN
7.92 8.49 7.43 7.06
9.59 9.33 3.92 0.31

09:10:02

23-Aug-1990

2.76 6.94 4.38 1.86
0.46 3.17 NaN 4.89
0.97 9.50 7.65 4.45
8.23 0.34 7.95 6.46
15:03:40

15-Apr-2003

7.09 6.55 9.59 7.51
7.54 1.62 3.40 2.55
NaN 1.19 5.85 5.05
6.79 4.98 2.23 6.99

Opening the File

As with any of the low-level I/O functions, before reading, open the file with fopen, and obtain a file
identifier. By default, fopen opens files for read access, with a permission of 'r'.

When you finish processing the file, close it with fclose(fid).
Describing the Data

Describe the data in the file with format specifiers, such as '%s' for text, '%sd' for an integer, or
'%f' for a floating-point number. (For a complete list of specifiers, see the fscanf reference page.)

To skip literal characters in the file, include them in the format description. To skip a data field, use
an asterisk (' *') in the specifier.

For example, consider the header lines of mymeas .dat:

Measurement Data % skip the first 2 words, go to next line: %*s %*s\n
N=3 % ignore 'N=', read integer: N=%d\n
% go to next line: \n
12:00:00
01-Jan-1977
4.21 6.55 6.78 6.55

To read the headers and return the single value for N:
N = fscanf(fid, '%*s %*s\nN=%d\n\n', 1);
Specifying the Number of Values to Read

By default, fscanf reapplies your format description until it cannot match the description to the
data, or it reaches the end of the file.

Optionally, specify the number of values to read, so that fscanf does not attempt to read the entire

file. For example, in mymeas .dat, each set of measurements includes a fixed number of rows and
columns:

4-3

4 Low-Level File I/O

4-4

measrows 4;
meascols 4;
meas = fscanf(fid, '%f', [measrows, meascols])';

Creating Variables in the Workspace

There are several ways to store mymeas.dat in the MATLAB workspace. In this case, read the values
into a structure. Each element of the structure has three fields: mtime, mdate, and meas.

Note fscanf fills arrays with numeric values in column order. To make the output array match the
orientation of numeric data in a file, transpose the array.

filename = 'mymeas.dat';
measrows = 4;
meascols = 4;

% open the file
fid = fopen(filename);

% read the file headers, find N (one value)
N = fscanf(fid, '%*s %*s\nN=%d\n\n', 1);

% read each set of measurements

for n = 1:N
mystruct(n).mtime
mystruct(n).mdate

1);
1);

fscanf(fid,
fscanf(fid,

1o !
%S,
1o !
%S,

% fscanf fills the array in column order,
% so transpose the results
mystruct(n).meas = ...
fscanf(fid, '%f', [measrows, meascols])';
end

% close the file
fclose(fid);

Reading Data Line-by-Line

MATLAB provides two functions that read lines from files and store them as character vectors: fgetl
and fgets. The fgets function copies the line along with the newline character to the output, but
fgetl does not.

The following example uses fgetl to read an entire file one line at a time. The function litcount
determines whether a given character sequence (literal) appears in each line. If it does, the
function prints the entire line preceded by the number of times the literal appears on the line.

function y = litcount(filename, literal)
% Count the number of times a given literal appears in each line.

fid =
y =0;
tline = fgetl(fid);
while ischar(tline)
matches = strfind(tline, literal);
num = length(matches);

fopen(filename);

Import Text Data Files with Low-Level I/O

if num > 0
y =y + num;
fprintf (1, '%d:%s\n',num,tline);
end
tline = fgetl(fid);
end
fclose(fid);

Create an input data file called badpoem:

Oranges and lemons,
Pineapples and tea.
Orangutans and monkeys,
Dragonflys or fleas.

To find out how many times 'an' appears in this file, call Litcount:
litcount('badpoem', 'an')
This returns:

2: Oranges and lemons,
1: Pineapples and tea.
3: Orangutans and monkeys,
ans =
6

Testing for End of File (EOF)

When you read a portion of your data at a time, you can use feof to check whether you have reached
the end of the file. feof returns a value of 1 when the file pointer is at the end of the file. Otherwise,
it returns 0.

Note Opening an empty file does not move the file position indicator to the end of the file. Read
operations, and the fseek and frewind functions, move the file position indicator.

Testing for EOF with feof

When you use textscan, fscanf, or fread to read portions of data at a time, use feof to check
whether you have reached the end of the file.

For example, suppose that the hypothetical file mymeas . dat has the following form, with no
information about the number of measurement sets. Read the data into a structure with fields for
mtime, mdate, and meas:

12:00:00
01-Jan-1977

4.21 6.55 6.78 6.55
9.15 0.35 7.57 NaN
7.92 8.49 7.43 7.06
9.59 9.33 3.92 0.31
09:10:02

23-Aug-1990

2.76 6.94 4.38 1.86
0.46 3.17 NaN 4.89

4 Low-Level File I/O

To read the file:

filename = 'mymeas.dat';
measrows = 4;
meascols = 4;

% open the file
fid = fopen(filename);

% make sure the file is not empty
finfo = dir(filename);
fsize finfo.bytes;

if fsize > 0

% read the file

block = 1;

while ~feof(fid)
mystruct(block) .mtime

fscanf(fid, '%s'
mystruct(block) .mdate %S’

fscanf(fid, '%s', 1);

% fscanf fills the array in column order,
% so transpose the results
mystruct(block).meas = ...

fscanf(fid, '%f', [measrows, meascols])';

block = block + 1;
end

end

% close the file
fclose(fid);

Testing for EOF with fgetl and fgets

If you use fgetl or fgets in a control loop, feof is not always the best way to test for end of file. As
an alternative, consider checking whether the value that fgetl or fgets returns is a character
vector.

For example, the function litcount described in “Reading Data Line-by-Line” on page 4-4 includes
the following while loop and fgetl calls :

y =0;
tline = fgetl(fid);
while ischar(tline)
matches = strfind(tline, literal);
num = length(matches);
if num > 0
y =y + num;
fprintf (1, '%d:%s\n',num,tline);
end
tline = fgetl(fid);
end

4-6

Import Text Data Files with Low-Level I/O

This approach is more robust than testing ~feof (fid) for two reasons:

« If fgetl or fgets find data, they return a character vector. Otherwise, they return a number
(-1).

» After each read operation, fgetl and fgets check the next character in the file for the end-of-file
marker. Therefore, these functions sometimes set the end-of-file indicator before they return a
value of - 1. For example, consider the following three-line text file. Each of the first two lines ends
with a newline character, and the third line contains only the end-of-file marker:

123
456

Three sequential calls to fgetl yield the following results:

tl = fgetl(fid); % tl = '123', feof(fid) = false
t2 = fgetl(fid); % t2 = '456', feof(fid) = true
t3 = fgetl(fid); % t3 = -1, feof(fid) = true

This behavior does not conform to the ANSI specifications for the related C language functions.

Opening Files with Different Character Encodings

Encoding schemes support the characters required for particular alphabets, such as those for
Japanese or European languages. Common encoding schemes include US-ASCII or UTF-8.

If you do not specify an encoding scheme when opening a file for reading, fopen uses auto character-
set detection to determine the encoding. If you do not specify an encoding scheme when opening a
file for writing, fopen defaults to using UTF-8 in order to provide interoperability between all
platforms and locales without data loss or corruption.

To determine the default, open a file, and call fopen again with the syntax:
[filename, permission, machineformat, encoding] = fopen(fid);

If you specify an encoding scheme when you open a file, the following functions apply that scheme:
fscanf, fprintf, fgetl, fgets, fread, and fwrite.

For a complete list of supported encoding schemes, and the syntax for specifying the encoding, see
the fopen reference page.

4 ow-Level File 1/0

Import Binary Data with Low-Level I/O

4-8

In this section...

“Low-Level Functions for Importing Data” on page 4-8
“Reading Binary Data in a File” on page 4-8

“Reading Portions of a File” on page 4-10

“Reading Files Created on Other Systems” on page 4-12

Low-Level Functions for Importing Data

Low-level file I/O functions allow the most direct control over reading or writing data to a file.
However, these functions require that you specify more detailed information about your file than the
easier-to-use high-level functions. For a complete list of high-level functions and the file formats they
support, see “Supported File Formats for Import and Export” on page 1-2.

If the high-level functions cannot import your data, use one of the following:
+ fscanf, which reads formatted data in a text or ASCII file; that is, a file you can view in a text
editor. For more information, see “Reading Data in a Formatted Pattern” on page 4-2.

+ fgetl and fgets, which read one line of a file at a time, where a newline character separates
each line. For more information, see “Reading Data Line-by-Line” on page 4-4.

+ fread, which reads a stream of data at the byte or bit level. For more information, see “Reading
Binary Data in a File” on page 4-8.

Note The low-level file I/O functions are based on functions in the ANSI Standard C Library.
However, MATLAB includes vectorized versions of the functions, to read and write data in an array
with minimal control loops.

Reading Binary Data in a File

As with any of the low-level I/O functions, before importing, open the file with fopen, and obtain a
file identifier. When you finish processing a file, close it with fclose(fileID).

By default, fread reads a file 1 byte at a time, and interprets each byte as an 8-bit unsigned integer
(uint8). fread creates a column vector, with one element for each byte in the file. The values in the
column vector are of class double.

For example, consider the file nine.bin, created as follows:

fid = fopen('nine.bin','w');
fwrite(fid, [1:9]1);
fclose(fid);

To read all data in the file into a 9-by-1 column vector of class double:

fid = fopen('nine.bin');
col9 = fread(fid);
fclose(fid);

Import Binary Data with Low-Level 1/0O

Changing the Dimensions of the Array

By default, fread reads all values in the file into a column vector. However, you can specify the
number of values to read, or describe a two-dimensional output matrix.

For example, to read nine.bin, described in the previous example:
fid = fopen('nine.bin');

% Read only the first six values
colé = fread(fid, 6);

% Return to the beginning of the file
frewind(fid);

% Read first four values into a 2-by-2 matrix
frewind(fid);

two dim4 = fread(fid, [2, 2]);

% Read into a matrix with 3 rows and

% unspecified number of columns

frewind(fid);

two dim9 = fread(fid, [3, inf]);

% Close the file
fclose(fid);

Describing the Input Values

If the values in your file are not 8-bit unsigned integers, specify the size of the values.

For example, consider the file fpoint.bin, created with double-precision values as follows:
myvals = [pi, 42, 1/3];

fid = fopen('fpoint.bin','w');

fwrite(fid, myvals, 'double');

fclose(fid);

To read the file:

fid = fopen('fpoint.bin');

% read, and transpose so samevals = myvals
samevals = fread(fid, 'double')’;

fclose(fid);
For a complete list of precision descriptions, see the fread function reference page.
Saving Memory

By default, fread creates an array of class double. Storing double-precision values in an array
requires more memory than storing characters, integers, or single-precision values.

To reduce the amount of memory required to store your data, specify the class of the array using one
of the following methods:

4-9

4 ow-Level File I/0

4-10

* Match the class of the input values with an asterisk (' *'). For example, to read single-precision
values into an array of class single, use the command:

mydata = fread(fid, '*single')

* Map the input values to a new class with the '=>"' symbol. For example, to read uint8 values into

an uintl6 array, use the command:
mydata = fread(fid, 'uint8=>uintl6')

For a complete list of precision descriptions, see the fread function reference page.

Reading Portions of a File

MATLAB low-level functions include several options for reading portions of binary data in a file:
* Read a specified number of values at a time, as described in “Changing the Dimensions of the
Array” on page 4-9. Consider combining this method with “Testing for End of File” on page 4-10.

* Move to a specific location in a file to begin reading. For more information, see “Moving within a
File” on page 4-10.

+ Skip a certain number of bytes or bits after each element read. For an example, see “Write and
Read Complex Numbers” on page 4-21.

Testing for End of File

When you open a file, MATLAB creates a pointer to indicate the current position within the file.

Note Opening an empty file does not move the file position indicator to the end of the file. Read
operations, and the fseek and frewind functions, move the file position indicator.

Use the feof function to check whether you have reached the end of a file. feof returns a value of 1
when the file pointer is at the end of the file. Otherwise, it returns 0.

For example, read a large file in parts:

filename = 'largedata.dat’; % hypothetical file
segsize = 10000;

fid = fopen(filename);

while ~feof(fid)
currData = fread(fid, segsize);
if ~isempty(currData)
disp('Current Data:');
disp(currData);
end
end

fclose(fid);
Moving within a File

To read or write selected portions of data, move the file position indicator to any location in the file.
For example, call fseek with the syntax

Import Binary Data with Low-Level 1/0

fseek(fid,offset,origin);
where:

* fid is the file identifier obtained from fopen.
* offset is a positive or negative offset value, specified in bytes.
* origin specifies the location from which to calculate the position:

"bof' Beginning of file
"cof' Current position in file
‘eof" End of file

Alternatively, to move easily to the beginning of a file:
frewind(fid);

Use ftell to find the current position within a given file. ftell returns the number of bytes from
the beginning of the file.

For example, create a file five.bin:
A= 1:5;

fid = fopen('five.bin','w');
fwrite(fid, A, 'short');
fclose(fid);

Because the call to fwrite specifies the short format, each element of A uses two storage bytes in
five.bin.

Reopen five.bin for reading:
fid = fopen('five.bin','r');
Move the file position indicator forward 6 bytes from the beginning of the file:

status = fseek(fid,6, 'bof');

File Position bef 1 2 3 4 5 & 7 8
Pile Contents 0 1 0 2 0 3,0 4 0 5
TFile Position Indicateor |

Read the next element:
four = fread(fid, 1, 'short');

The act of reading advances the file position indicator. To determine the current file position
indicator, call ftell:

position = ftell(fid)

position =

8
File Position bof 1 2 3 4 5 & 8 9 10 eof
File Contents o 1 0 2 o 3 0 4 0 5

File Position Indicater

4-11

4 Low-Level File 1/0

4-12

To move the file position indicator back 4 bytes, call fseek again:

status = fseek(fid, -4, 'cof');

File Position bef 1 2 3 4 5 & 7 # 9 10 eof
File Contents a1 0 2 o 3 0o 4 0 58
File Positicn Indicator

Read the next value:

three = fread(fid, 1, 'short');

Reading Files Created on Other Systems

Different operating systems store information differently at the byte or bit level:

* Big-endian systems store bytes starting with the largest address in memory (that is, they start
with the big end).

» Little-endian systems store bytes starting with the smallest address (the little end).
Windows systems use little-endian byte ordering, and UNIX systems use big-endian byte ordering.

To read a file created on an opposite-endian system, specify the byte ordering used to create the file.
You can specify the ordering in the call to open the file, or in the call to read the file.

For example, consider a file with double-precision values named little.bin, created on a little-
endian system. To read this file on a big-endian system, use one (or both) of the following commands:

* Open the file with
fid = fopen('little.bin', 'r', 'l")
* Read the file with
mydata = fread(fid, 'double', 'l"')
where '1"' indicates little-endian ordering.
If you are not sure which byte ordering your system uses, call the computer function:
[cinfo, maxsize, ordering] = computer

The returned orderingis 'L' for little-endian systems, or 'B"' for big-endian systems.

Export to Text Data Files with Low-Level I/0

Export to Text Data Files with Low-Level I/O

In this section...

“Write to Text Files Using fprintf” on page 4-13
“Append to or Overwrite Existing Text Files” on page 4-14

“Open Files with Different Character Encodings” on page 4-17

Write to Text Files Using fprintf

This example shows how to create text files, including combinations of numeric and character data
and nonrectangular files, using the low-level fprintf function.

fprintf is based on its namesake in the ANSI® Standard C Library. However, MATLAB® uses a
vectorized version of fprintf that writes data from an array with minimal control loops.

Open the File

Create a sample matrix y with two rows.

X
y

0:0.1:1;
[x; exp(x)];

Open a file for writing with fopen and obtain a file identifier, fileID. By default, fopen opens a file
for read-only access, so you must specify the permission to write or append, such as 'w' or 'a’.

fileID = fopen('exptable.txt', 'w');
Write to the File

Write a title, followed by a blank line using the fprintf function. To move to a new line in the file,
use '\n'.

fprintf(fileID, 'Exponential Function\n\n');

Note: Some Windows® text editors, including Microsoft® Notepad, require a newline character
sequence of '\r\n' instead of '\n'. However, '\n' is sufficient for Microsoft Word or WordPad.

Write the values in y in column order so that two values appear in each row of the file. fprintf
converts the numbers or characters in the array inputs to text according to your specifications.
Specify '%f"' to print floating-point numbers.

fprintf(filelD, '%f %f\n',y);

Other common conversion specifiers include '%d"' for integers or '%s' for characters. fprintf
reapplies the conversion information to cycle through all values of the input arrays in column order.

Close the file using fclose when you finish writing.

fclose(filelD);

View the contents of the file using the type function.

type exptable.txt

4-13

4 ow-Level File 1/0

Exponential Function

0.000000 1.000000
0.100000 1.105171
0.200000 1.221403
0.300000 1.349859
0.400000 1.491825
0.500000 1.648721
0.600000 1.822119
0.700000 2.013753
0.800000 2.225541
0.900000 2.459603
1.000000 2.718282

Additional Formatting Options

Optionally, include additional information in the call to fprintf to describe field width, precision, or
the order of the output values. For example, specify the field width and number of digits to the right
of the decimal point in the exponential table.

fileID = fopen('exptable new.txt', 'w');

fprintf(filelD, 'Exponential Function\n\n');
fprintf(filelD, '%6.2f %12.8f\n', y);

fclose(filelID);
View the contents of the file.

type exptable new.txt

Exponential Function

0.00 1.00000000
0.10 1.16517092
0.20 1.22140276
0.30 1.34985881
0.40 1.49182470
0.50 1.64872127
0.60 1.82211880
0.70 2.01375271
0.80 2.22554093
0.90 2.45960311
1.00 2.71828183

Append to or Overwrite Existing Text Files

This example shows how to append values to an existing text file, rewrite the entire file, and
overwrite only a portion of the file.

By default, fopen opens files with read access. To change the type of file access, use the permission
specifier in the call to fopen. Possible permission specifiers include:

* 'r' forreading
* 'w' for writing, discarding any existing contents of the file

4-14

Export to Text Data Files with Low-Level I/0

* 'a' for appending to the end of an existing file

To open a file for both reading and writing or appending, attach a plus sign to the permission, such as
'w+' or 'a+'. If you open a file for both reading and writing, you must call fseek or frewind
between read and write operations.

Append to Existing Text File

Create a file named changing. txt.

fileID = fopen('changing.txt','w');

fmt = '%5d %5d %5d %5d\n‘';
fprintf(filelID, fmt, magic(4));
fclose(filelD);

The current contents of changing. txt are:

16 5 9 4

2117 14

310 6 15

138121

Open the file with permission to append.

fileID = fopen('changing.txt','a');

Write the values [55 55 55 55] at the end of file:
fprintf(filelD, fmt, [55 55 55 55]);

Close the file.

fclose(filelD);

View the contents of the file using the type function.

type changing.txt

16 5 9 4
2 11 7 14
3 10 6 15

13 8 12 1

55 55 55 55

Overwrite Entire Text File

A text file consists of a contiguous set of characters, including newline characters. To replace a line of
the file with a different number of characters, you must rewrite the line that you want to change and
all subsequent lines in the file.

Replace the first line of changing. txt with longer, descriptive text. Because the change applies to
the first line, rewrite the entire file.

replacelLine = 1;
numLines = 5;

4-15

4 Low-Level File I/O

newText = 'This file originally contained a magic square';

filelD fopen('changing.txt','r");
mydata cell(1, numLines);
for k = 1l:numLines
mydata{k} = fgetl(filelID);
end
fclose(filelD);

mydata{replaceLine} = newText;
filelD fopen('changing.txt', 'w");

fprintf(filelD, '%s\n',mydata{:});
fclose(filelD);

View the contents of the file.
type changing.txt

This file originally contained a magic square

2 11 7 14
3 10 6 15
13 8 12 1

55 55 55 55

Overwrite Portion of Text File

Replace the third line of changing.txt with [33 33 33 33]. If you want to replace a portion of a text
file with exactly the same number of characters, you do not need to rewrite any other lines in the file.

replacelLine = 3;
myformat = '%5d %5d %5d %5d\n';
newData = [33 33 33 33];

Move the file position marker to the correct line.
fileID = fopen('changing.txt','r+');
for k=1:(replacelLine-1);

fgetl(filelD);
end

Call fseek between read and write operations.
fseek(filelID,0, 'cof');

fprintf(fileID, myformat, newData);
fclose(filelD);

View the contents of the file.
type changing.txt
This file originally contained a magic square

2 11 7 14
33 33 33 33

4-16

Export to Text Data Files with Low-Level I/0

13 8 12 1
55 55 55 55

Open Files with Different Character Encodings

Encoding schemes support the characters required for particular alphabets, such as those for
Japanese or European languages. Common encoding schemes include US-ASCII or UTF-8.

If you do not specify an encoding scheme when opening a file for reading, fopen uses auto character-
set detection to determine the encoding. If you do not specify an encoding scheme when opening a
file for writing, fopen defaults to using UTF-8 in order to provide interoperability between all
platforms and locales without data loss or corruption.

To determine the default, open a file, and call fopen again with the syntax:
[filename, permission, machineformat, encoding] = fopen(fid);

If you specify an encoding scheme when you open a file, the following functions apply that scheme:
fscanf, fprintf, fgetl, fgets, fread, and fwrite.

For a complete list of supported encoding schemes, and the syntax for specifying the encoding, see
the fopen reference page.

See Also
fprintf | fopen | fseek

More About

. “Formatting Text”
. “Write Data to Text Files” on page 2-22

4-17

4 Low-Level File 1/0

Export Binary Data with Low-Level I/0

4-18

In this section...

“Low-Level Functions for Exporting Data” on page 4-18
“Write Binary Data to a File” on page 4-18

“Overwrite or Append to an Existing Binary File” on page 4-19
“Create a File for Use on a Different System” on page 4-20
“Write and Read Complex Numbers” on page 4-21

Low-Level Functions for Exporting Data

Low-level file I/O functions allow the most direct control over reading or writing data to a file.
However, these functions require that you specify more detailed information about your file than the
easier-to-use high-level functions. For a complete list of high-level functions and the file formats they
support, see “Supported File Formats for Import and Export” on page 1-2.

If the high-level functions cannot export your data, use one of the following:

+ fprintf, which writes formatted data to a text or ASCII file; that is, a file you can view in a text
editor or import into a spreadsheet. For more information, see “Export to Text Data Files with
Low-Level I/O” on page 4-13.

* fwrite, which writes a stream of binary data to a file. For more information, see “Write Binary
Data to a File” on page 4-18.

Note The low-level file I/O functions are based on functions in the ANSI Standard C Library.
However, MATLAB includes vectorized versions of the functions, to read and write data in an array
with minimal control loops.

Write Binary Data to a File

This example shows how to use the fwrite function to export a stream of binary data to a file.

Create a file named nine.bin with the integers from 1 to 9. As with any of the low-level I/O
functions, before writing, open or create a file with fopen and obtain a file identifier.

fileID = fopen('nine.bin','w");
fwrite(fileID, [1:9]);

By default, fwrite writes values from an array in column order as 8-bit unsigned integers (uint8).
When you finish processing a file, close it with fclose.
fclose(fileID);

Create a file with double-precision values. You must specify the precision of the values if the values in
your matrix are not 8-bit unsigned integers.

mydata = [pi 42 1/3];

Export Binary Data with Low-Level I/O

fileID = fopen('double.bin','w');
fwrite(fileID,mydata, 'double');
fclose(filelD);

Overwrite or Append to an Existing Binary File

This example shows how to overwrite a portion of an existing binary file and append values to the file.

By default, fopen opens files with read access. To change the type of file access, use the permission
specifier in the call to Topen. Possible permission specifiers include:

* 'r' forreading
« 'w' for writing, discarding any existing contents of the file
* ‘'a' for appending to the end of an existing file

To open a file for both reading and writing or appending, attach a plus sign to the permission, such as
'w+' or 'a+'. If you open a file for both reading and writing, you must call fseek or frewind
between read and write operations.

Overwrite a Portion of an Existing File
Create a file named magic4.bin, specifying permission to write and read.

fileID = fopen('magic4.bin', 'w+');
fwrite(fileID,magic(4));

The original magic(4) matrix is:

16 2 3 13

5 11 10 8

976 12

4 14 151

The file contains 16 bytes, 1 for each value in the matrix.

Replace the values in the second column of the matrix with the vector, [44 44 44 44]. To do this,
first seek to the fourth byte from the beginning of the file using fseek.

fseek(filelID, 4, 'bof');

Write the vector [44 44 44 44] using fwrite.
fwrite(filelD, [44 44 44 44]);

Read the results from the file into a 4-by-4 matrix.

frewind(filelD);
newdata = fread(filelD, [4,4])

newdata = 4x4

4-19

4 Low-Level File 1/0

4-20

16 44 3 13
5 44 10 8
9 44 6 12
4 44 15 1
Close the file.
fclose(filelD);

Append Binary Data to Existing File

Append the values [55 55 55 55] to magic4.bin. First, open the file with permission to append
and read.

fileID = fopen('magic4.bin','a+");

Write values at end of file.

fwrite(fileID, [55 55 55 55]);

Read the results from the file into a 4-by-5 matrix.

frewind(fileID);
appended = fread(fileID, [4,5])

appended = 4x5

16 44 3 13 55
5 44 10 8 55
9 44 6 12 55
4 44 15 1 55
Close the file.
fclose(filelID);

Create a File for Use on a Different System

Different operating systems store information differently at the byte or bit level:

* Big-endian systems store bytes starting with the largest address in memory (that is, they start
with the big end).

» Little-endian systems store bytes starting with the smallest address (the little end).
Windows systems use little-endian byte ordering, and UNIX systems use big-endian byte ordering.

To create a file for use on an opposite-endian system, specify the byte ordering for the target system.
You can specify the ordering in the call to open the file, or in the call to write the file.

For example, to create a file named myfile.bin on a big-endian system for use on a little-endian
system, use one (or both) of the following commands:

* Open the file with

fid = fopen('myfile.bin', 'w', 'l')

Export Binary Data with Low-Level I/O

* Write the file with
fwrite(fid, mydata, precision, 'l'")
where '1' indicates little-endian ordering.
If you are not sure which byte ordering your system uses, call the computer function:
[cinfo, maxsize, ordering] = computer

The returned orderingis 'L' for little-endian systems, or 'B"' for big-endian systems.

Write and Read Complex Numbers

This example shows how to write and read complex numbers in binary files.

The available precision values for fwrite do not explicitly support complex numbers. To store
complex numbers in a file, separate the real and imaginary components and write them separately to
the file. There are two ways to do this:

* Write all real components followed by all imaginary components
* Interleave the components

Use the approach that allows you to read the data in your target application.
Separate Real and Imaginary Components

Create an array that contains complex values.

nrows = 5;
ncols = 5;
z = complex(rand(nrows, ncols), rand(nrows, ncols))

z = 5x5 complex

0.8147 + 0.75771 0.0975 + 0.7060i 0.1576 + 0.82351i 0.1419 + 0.43871 0.6557 +
0.9058 + 0.7431i 0.2785 + 0.03181 0.9706 + 0.69481i 0.4218 + 0.38161 0.0357 +
0.1270 + 0.3922i 0.5469 + 0.2769i 0.9572 + 0.31711i 0.9157 + 0.76551 0.8491 +
0.9134 + 0.65551 0.9575 + 0.04621i 0.4854 + 0.95021 0.7922 + 0.79521 0.9340 +
0.6324 + 0.1712i 0.9649 + 0.0971i 0.8003 + 0.0344i 0.9595 + 0.18691 0.6787 +

Separate the complex values into real and imaginary components.

real(z);
imag(z);

z real =
z imag =

Write All Real Components Followed By Imaginary Components

Write all the real components, z_real, followed by all the imaginary components, z_imag, to a file
named complex adj.bin.

adjacent = [z real z imag];
fileID = fopen('complex adj.bin', 'w');

fwrite(fileID,adjacent, 'double');
fclose(filelD);

4-21

[cNoNoNoNO]

.48981
.44561
.64631
.70941
.75471

4 Low-Level File I/O

4-22

Read the values from the file using fread.

fileID = fopen('complex adj.bin'");

same_real = fread(fileID, [nrows, ncols], 'double');
same_imag = fread(fileID, [nrows, ncols], 'double');
fclose(filelD);

same_z = complex(same real, same imag);

Interleave Real and Imaginary Components

An alternative approach is to interleave the real and imaginary components for each value. fwrite
writes values in column order, so build an array that combines the real and imaginary parts by
alternating rows.

First, preallocate the interleaved array.

interleaved = zeros(nrows*2, ncols);

Alternate real and imaginary data.

newrow = 1;

for row = l:nrows
interleaved(newrow,:) = z real(row,:);
interleaved(newrow + 1,:) = z imag(row,:);
Newrow = newrow + 2;

end

Write the interleaved values to a file named complex int.bin.
fileID = fopen('complex int.bin','w');

fwrite(fileID, interleaved, 'double');
fclose(filelID);

Open the file for reading and read the real values from the file. The fourth input to fread tells the
function to skip the specified number of bytes after reading each value.

fileID = fopen('complex int.bin'");
same_real = fread(fileID, [nrows, ncols], 'double', 8);

Return to the first imaginary value in the file. Then, read all the imaginary data.
fseek(fileID, 8, 'bof');

same_imag = fread(fileID, [nrows, ncols], 'double', 8);
fclose(filelD);

same_z = complex(same_real, same_imag);

See Also
fopen | fwrite | fread | fseek

More About
. “Moving within a File” on page 4-10

Internet of Things (loT) Data

* “Aggregate Data in ThingSpeak Channel” on page 5-2

* “Regularize Irregularly Sampled Data” on page 5-3

* “Plot Data Read from ThingSpeak Channel” on page 5-4

* “Read ThingSpeak Data and Predict Battery Discharge Time with Linear Fit” on page 5-6

5

Internet of Things (loT) Data

Aggregate Data in ThingSpeak Channel

5-2

This example shows how to aggregate data to a lower time resolution in a ThingSpeak™ channel to
remove irregularity. Irregularity in a data can be caused due to several factors such as event driven
sensing, malfunctioning of sensors, or network latencies.

Read Data

ThingSpeak channel 22641 contains tide and weather data measured once a minute at Ockway Bay,
Cape Cod. Field 2 of the channel contains air temperature data. Read the air temperature data for the
past 3 hours from channel 22641 using the thingSpeakRead function.

datetimeStop = dateshift(datetime('now'),'start', "hour');
datetimeStart = dateshift(datetime('now'), 'start', "hour') - hours(3);

data = thingSpeakRead (22641, 'DateRange', [datetimeStart,datetimeStopl], ...
'Fields',2, 'outputFormat', 'timetable');

Aggregate the Data

Data is measured once every minute. However, due to network latency associated with the
measurement system, the actual timestamps can be greater than or less than a minute apart. Further,
for the application of interest, the frequency of data measured every minute is high. Data at an hourly
time resolution is sufficient. You can use the retime function to aggregate the data for each hour to a
single value. You can use the maximum value for each hour to aggregate the data. Preview the first
four values of the data with head.

dataHourly = retime(data, 'hourly', 'max"');
head(dataHourly,4)
ans =
3x1 timetable
Timestamps AirTemperatureC
03-Jan-2019 14:00:00

03-Jan-2019 15:00:00
03-Jan-2019 16:00:00

[©) e BRN|
S~ o v

Send Data to ThingSpeak

Change the channellD and the writeAPIKey to send data to your channel

channellID=17504;
writeAPIKey="'237ZL. GOBBU9TWHG2H";
thingSpeakWrite(channellID,data, 'writeKey',writeAPIKey);

See Also
thingSpeakRead | thingSpeakWrite | retime

Regularize Irregularly Sampled Data

Regularize Irregularly Sampled Data

This example shows how to regularize irregularly sampled data to have a constant time period
between measurements. You update timestamps of data read from a ThingSpeak™ channel to remove
irregularity, then write the data to a channel. Timestamp variations in measured data introduced due
to network latencies or hardware resets can affect data preprocessing and data analytics algorithms.
Many algorithms require regularly sampled data to work correctly.

Read Data from the Weather Station Channel

ThingSpeak channel 12397 contains data from the MathWorks® weather station, located in Natick,
Massachusetts. The data is collected once every minute. Field 4 of the channel contains air
temperature data. To check for irregularly sampled data, read the air temperature data from channel
12397 using the thingSpeakRead function.

data = thingSpeakRead (12397, 'NumMin',60, 'Fields',4, 'outputFormat', 'timetable');
Check for Irregularly Sampled Data

The data for the last 60 minutes read from channel 12397 is stored in as a timetable. Use isregular
function to check if the channel data is regularly sampled. If data is irregularly sampled, generate a
regularly spaced time vector for the time period of interest. Generate a new time vector using
linspace with the startTime, stopTime, and the number of measurements.

regularFlag = isregular(data, 'Time');

if ~regularFlag
startTime = data.Timestamps(1l);
stopTime = data.Timestamps(end);
newTimeVector = linspace(startTime,stopTime,height(data));
data.Timestamps = newTimeVector;
end

Send Data to ThingSpeak

Send the processed data to a ThingSpeak channel using the thingSpeakWrite function.

% Change the channelID and the writeAPIKey to send data to your channel.
channelID=17504;

writeAPIKey="'23ZLGOBBU9TWHG2H";

thingSpeakWrite(channellID,data, 'WriteKey',writeAPIKey);

See Also
thingSpeakRead | thingSpeakWrite | linspace

5-3

5 Internet of Things (loT) Data

Plot Data Read from ThingSpeak Channel

This example shows how to read data from a public ThingSpeak™ channel and create a simple plot
visualization from the results.

Read Data from ThingSpeak Channel

ThingSpeak channel 102698 contains air quality data from a parking garage in Natick,
Massachusetts. Field 5 is a measure of dust concentration.

[dustData,Timestamps]=thingSpeakRead (102698, 'Fields',5, '"NumPoints',63000);

Plot the Dust Concentration over Time

Use plot to visualize the data. Use ylabel and title to add labels to your plot.

plot(Timestamps,dustData);
ylabel('Dust Concentration (ppm)');
title('MathWorks Air Quality Station, East Parking Garage');

MathWorks Air Quality Station, East Parking Garage

800

600

Dust Concentration

400

200

Mowv 27 Mov 28 Mov 29 Mov 30 Dec M
2021

Plot Data Read from ThingSpeak Channel

During business days, you can see spikes in the dust concentration at times when cars arrive or
depart.

See Also
thingSpeakRead | thingSpeakWrite | plot | ylabel | title

3-5

5 Internet of Things (loT) Data

Read ThingSpeak Data and Predict Battery Discharge Time
with Linear Fit

This example shows how to read battery data from a ThingSpeak™ channel and analyze the data to
determine the remaining battery life. Use a linear fit to predict the date that the battery will fail, and
then write the remaining time in days to another ThingSpeak Channel. You read data fora 12 V
battery connected to a microprocessor reporting its voltage to ThingSpeak every half hour. Then use
regression to predict the day and time when the battery will fail.

Read Data from ThingSpeak Channel

Start by storing channel and date information in variables, and then use thingSpeakRead to read
the data. Channel 592680 shows the scaled measurement of voltage from a 12 V battery. Use the
DateRange name-value pair to use a specific selection of data.

batteryChannelID = 592680;

startDate = datetime('Oct 20, 2018');

endDate = datetime('Oct 23, 2018'");

batteryData = thingSpeakRead(batteryChannellD, 'DateRange', [startDate endDate], 'Outputformat', 'Ti

Convert the Data for Fitting and Plot

The channel stores raw data from the device. Convert the analog-to-digital converter (ADC)
measurement to voltage using the experimentally determined conversion factor 14.6324. Then use
scatter to generate a plot.

myVoltage = 14.6324 * batteryData.Voltage;
scatter(batteryData.Timestamps,myVoltage, 'b');
ylabel('Voltage (V)');

hold on

Read ThingSpeak Data and Predict Battery Discharge Time with Linear Fit

181y
o O

(D

1291 O oo

e O O

12871 oo (e ale

oD @™ O O

= 127 @y O

O (O CEDIERIED O0D 0D D 40O
o 12-5, - ID GO e T A T e
am O an

e

Volta

@» o
@ O
O oD

12371

12271

12.1 ' ' !
Oct 20 Oct 21 Oct 22 Oct 23

2018

Fit the Data

The timetable datetime format is useful for reading and plotting. To fit the data, the datetime needs to
be in numeric format. Use datenum to convert the timestamps into a number of days, and subtract
the starting number to keep the values low. Use polyfit to perform linear regression on the data,
and polyval to evaluate the fit at the existing time values. Add the fit line to the previous plot.

battTimes = datenum(batteryData.Timestamps);
battTimes= battTimes-battTimes(1);
myFit=polyfit(battTimes,myVoltage,1);
fitLine=polyval(myFit,battTimes);
plot(batteryData.Timestamps, fitLine, 'r--"');

5-7

5

Internet of Things (loT) Data

181y

12971 O oo

12.81 o oo _ 000

e

hi2er

Volta

12371

12271

12.1 ' ' !
Oct 20 Oct 21 Oct 22 Oct 23

2018

Predict Discharge Time

The battery should not be discharged below 10.4 V. Find the number of days until the fit line will
intersect with this voltage.

endDays = (10.4-myFit(2))/myFit(1)

endDays = 13.1573

There are just over 13 days until the battery dies.
Write Prediction to ThingSpeak

The thingSpeakWrite function writes the result to a ThingSpeak channel. Return the output from
thingSpeakWrite to ensure a successful write operation. Change the writeChannellID and
writeAPIKey to write to your own channel.

writeChannelID = 17504;
writeAPIKey="'237ZLGOBBU9TWHG2H";
result = thingSpeakWrite(writeChannellD, round(endDays,4), 'WriteKey',writeAPIKey)

result = struct with fields:
Fieldl: '13.1573"'
Field2: []
Field3:
Field4:
Field5:
Field6:

—_————
[—

Read ThingSpeak Data and Predict Battery Discharge Time with Linear Fit

Field7:
Field8:
Latitude:
Longitude:
ChannellD:
Created:
LastEntryID:
Altitude:

The result shows the successful write operation and reports the data that was written.

See Also

thingSpeakRead | thingSpeakWrite | datetime | datnum | scatter | polyfit | polyval

[]

[]

[]

[]

17504

03-Jun-2019 15:24:43
50018

[]

5-9

Images

* “Importing Images” on page 6-2
* “Exporting to Images” on page 6-5

6

Images

Importing Images

6-2

To import data into the MATLAB workspace from a graphics file, use the imread function. Using this
function, you can import data from files in many standard file formats, including the Tagged Image
File Format (TIFF), Graphics Interchange Format (GIF), Joint Photographic Experts Group (JPEG),
and Portable Network Graphics (PNG) formats. For a complete list of supported formats, see the
imread reference page.

This example reads the image data stored in a file in JPEG format into the MATLAB workspace as the
array I:

I = imread('ngc6543a.jpg');

imread represents the image in the workspace as a multidimensional array of class uint8. The
dimensions of the array depend on the format of the data. For example, imread uses three
dimensions to represent RGB color images:

whos I
Name Size Bytes Class
I 650x600x3 1170000 uint8 array

Grand total is 1170000 elements using 1170000 bytes

For more control over reading TIFF files, use the Tiff object—see “Reading Image Data and
Metadata from TIFF Files” on page 6-3 for more information.

Getting Information About Image Files

If you have a file in a standard graphics format, use the imfinfo function to get information about its
contents. The imfinfo function returns a structure containing information about the file. The fields
in the structure vary with the file format, but imfinfo always returns some basic information
including the file name, last modification date, file size, and format.

This example returns information about a file in Joint Photographic Experts Group (JPEG) format:

info = imfinfo('ngc6543a.jpg")

info =
Filename: 'matlabroot\toolbox\matlab\demos\ngc6543a.jpg’
FileModDate: '01-0ct-1996 16:19:44"'

FileSize: 27387

Format: 'jpg'
FormatVersion: '

Width: 600
Height: 650

BitDepth: 24
ColorType: 'truecolor'
FormatSignature: '’
NumberOfSamples: 3
CodingMethod: 'Huffman'
CodingProcess: 'Sequential'’
Comment: {'CREATOR: XV Version 3.00b Rev: 6/15/94 Quality =...'}

Importing Images

Reading Image Data and Metadata from TIFF Files

While you can use imread to import image data and metadata from TIFF files, the function does have
some limitations. For example, a TIFF file can contain multiple images and each images can have
multiple subimages. While you can read all the images from a multi-image TIFF file with imread, you
cannot access the subimages. Using the Tiff object, you can read image data, metadata, and
subimages from a TIFF file. When you construct a Tiff object, it represents your connection with a
TIFF file and provides access to many of the routines in the LibTIFF library.

A step-by-step example of using Tiff object methods and properties to read subimages from a TIFF
file follows. To get the most out of the Tiff object, familiarize yourself with the TIFF specification
and technical notes. See LibTIFF - TIFF Library and Utilities.

Reading Subimages from a TIFF File

A TIFF file can contain one or more image file directories (IFD). Each IFD contains image data and
the metadata (tags) associated with the image. Each IFD can contain one or more subIFDs, which
also can contain image data and metadata. These subimages are typically reduced-resolution
(thumbnail) versions of the image data in the IFD containing the subIFDs.

To read the subimages in an IFD, you must get the location of the subimage from the SubIFD tag. The
SubIFD tag contains an array of byte offsets that point to the subimages. You then can pass the
address of the subIFD to the setSubDirectory method to make the subIFD the current IFD. Most
Tiff object methods operate on the current IFD.

1 Open a TIFF file that contains images and subimages using the Tiff object constructor. This
example uses the TIFF file created in “Creating TIFF File Subdirectories” on page 6-8, which
contains one IFD directory with two subIFDs. The Tiff constructor opens the TIFF file, and
makes the first subIFD in the file the current IFD:

t = Tiff('my_subimage file.tif','r');

2 Retrieve the locations of subIFDs associated with the current IFD. Use the getTag method to get
the value of the SubIFD tag. This method returns an array of byte offsets that specify the location
of subIFDs:

offsets = getTag(t, 'SubIFD"')
3 Navigate to the first subimage. First, set the currentIFD to the directory containing the first
subimage:

dirNum = 1;
setDirectory(t,dirNum);

4 Then, navigate to the first subIFD using the setSubDirectory method. Specify the byte offset
of the subIFD as an argument. This call makes the subIFD the current IFD:

setSubDirectory(t,offsets(1));
5 Read the image data from the current IFD (the first subIFD) the same way you read any other
IFD in the file:

subimage one = read(t);
6 View the first subimage:

imagesc(subimage one)
7 Navigate to the second subimage. First, reset the currentIFD to the directory containing the
second subimage:

setDirectory(t,dirNum);

6-3

http://www.simplesystems.org/libtiff/

6

Images

6-4

8 Then, navigate to the second subIFD using the setSubDirectory method. Specify the byte
offset of the second subIFD:

setSubDirectory(t,offsets(2));

9 Read the image data from the current IFD (the second subIFD) as you would with any other IFD
in the file:

subimage two = read(t);
10 View the second subimage:

imagesc(subimage two)
11 Close the Tiff object:

close(t);

See Also
Tiff

External Websites

. “Exporting to Images” on page 6-5

Exporting to Images

Exporting to Images

To export data from the MATLAB workspace using one of the standard graphics file formats, use the

imwrite function. Using this function, you can export data in formats such as the Tagged Image File
Format (TIFF), Joint Photographic Experts Group (JPEG), and Portable Network Graphics (PNG). For
a complete list of supported formats, see the imwrite reference page.

The following example writes a multidimensional array of uint8 data I from the MATLAB workspace
into a file in TIFF format. The class of the output image written to the file depends on the format
specified. For most formats, if the input array is of class uint8, imwrite outputs the data as 8-bit
values. See the imwrite reference page for details.

whos I
Name Size Bytes C(lass
I 650x600x3 1170000 uint8 array

Grand total is 1170000 elements using 1170000 bytes
imwrite(I, 'my_graphics file.tif','tif');

Note imwrite supports different syntaxes for several of the standard formats. For example, with
TIFF file format, you can specify the type of compression MATLAB uses to store the image. See the
imwrite reference page for details.

For more control writing data to a TIFF file, use the Tiff object—see “Exporting Image Data and
Metadata to TIFF Files” on page 6-5 for more information.

Exporting Image Data and Metadata to TIFF Files

While you can use imwrite to export image data and metadata (tags) to Tagged Image File Format
(TIFF) files, the function does have some limitations. For example, when you want to modify image
data or metadata in the file, you must write the all the data to the file. You cannot write only the
updated portion. Using the Tiff object, you can write portions of the image data and modify or add
individual tags to a TIFF file. When you construct a Tiff object, it represents your connection with a
TIFF file and provides access to many of the routines in the LibTIFF library.

The following sections provide step-by-step examples of using Tiff object methods and properties to
perform some common tasks with TIFF files. To get the most out of the Tiff object, you must be
familiar with the TIFF specification and technical notes. View this documentation at LibTIFF - TIFF
Library and Utilities.

Creating a New TIFF File

1 Create some image data. This example reads image data from a JPEG file included with MATLAB:

imgdata = imread('ngc6543a.jpg');
2 Create a new TIFF file by constructing a Tiff object, specifying the name of the new file as an
argument. To create a file you must specify either write mode ('w') or append mode ('a"'):

t = Tiff('myfile.tif','w');

When you create a new TIFF file, the Tiff constructor creates a file containing an image file
directory (IFD). A TIFF file uses this IFD to organize all the data and metadata associated with a

6-5

http://www.simplesystems.org/libtiff/
http://www.simplesystems.org/libtiff/

6

Images

6-6

particular image. A TIFF file can contain multiple IFDs. The Tiff object makes the IFD it creates
the current IFD. Tiff object methods operate on the current IFD. You can navigate among IFDs
in a TIFF file and specify which IFD is the current IFD using Tiff object methods.

Set required TIFF tags using the setTag method of the Tiff object. These required tags specify
information about the image, such as its length and width. To break the image data into strips,
specify a value for the RowsPerStrip tag. To break the image data into tiles, specify values for
the TileWidth and TileLength tags. The example creates a structure that contains tag names
and values and passes that to setTag. You also can set each tag individually.

tagstruct.ImageLength = size(imgdata,l);

tagstruct.ImageWidth = size(imgdata,2);

tagstruct.Photometric = Tiff.Photometric.RGB;
tagstruct.BitsPerSample = 8;

tagstruct.SamplesPerPixel = 3;

tagstruct.RowsPerStrip = 16;

tagstruct.PlanarConfiguration = Tiff.PlanarConfiguration.Chunky;
tagstruct.Software = 'MATLAB';

tagstruct % display tagstruct

setTag(t,tagstruct)

For information about supported TIFF tags and how to set their values, see “Setting Tag Values”
on page 6-9. For example, the Tiff object supports properties that you can use to set the

values of certain properties. This example uses the Tiff object PlanarConfiguration
property to specify the correct value for the chunky configuration:
Tiff.PlanarConfiguration.Chunky.

Write the image data and metadata to the current directory using the write method of the Tiff
object.

write(t,imgdata);

If you wanted to put multiple images into your file, call the writeDirectory method right after
performing this write operation. The writeDirectory method sets up a new image file
directory in the file and makes this new directory the current directory.

Close your connection to the file by closing the Tiff object:

close(t);
Test that you created a valid TIFF file by using the imread function to read the file, and then
display the image:

imagesc(imread('myfile.tif'));

Writing a Strip or Tile of Image Data

Note You can only modify a strip or a tile of image data if the data is not compressed.

Open an existing TIFF file for modification by creating a Tiff object. This example uses the file
created in “Creating a New TIFF File” on page 6-5. The TifTf constructor returns a handle to a
Tiff object.

t = Tiff('myfile.tif"','r+'");

Generate some data to write to a strip in the image. This example creates a three-dimensional
array of zeros that is the size of a strip. The code uses the number of rows in a strip, the width of
the image, and the number of samples per pixel as dimensions. The array is an array of uint8
values.

Exporting to Images

width = getTag(t, 'ImageWidth');

height = getTag(t, 'RowsPerStrip');

numSamples = getTag(t, 'SamplesPerPixel');

stripData = zeros(height,width,numSamples, 'uint8');

If the image data had a tiled layout, you would use the TileWidth and TilelLength tags to
specify the dimensions.

Write the data to a strip in the file using the writeEncodedStrip method. Specify the index
number that identifies the strip you want to modify. The example picks strip 18 because it is
easier to see the change in the image.

writeEncodedStrip(t,18,stripData);

If the image had a tiled layout, you would use the writeEncodedTile method to modify the tile.
Close your connection to the file by closing the Tiff object.

close(t);
Test that you modified a strip of the image in the TIFF file by using the imread function to read
the file, and then display the image.

modified imgdata = imread('myfile.tif');
imagesc(modified_imgdata)

Note the black strip across the middle of the image.

Modifying TIFF File Metadata (Tags)

1

Open an existing TIFF file for modification using the Tiff object. This example uses the file
created in “Creating a New TIFF File” on page 6-5. The TifTf constructor returns a handle to a
Tiff object.

t = Tiff('myfile.tif"','r+'");
Verify that the file does not contain the Artist tag, using the getTag method. This code should
issue an error message saying that it was unable to retrieve the tag.

artist value = getTag(t, 'Artist');
Add the Artist tag using the setTag method.

setTag(t, 'Artist', 'Pablo Picasso');

Write the new tag data to the TIFF file using the rewriteDirectory method. Use the
rewriteDirectory method when modifying existing metadata in a file or adding new metadata
to a file.

rewriteDirectory(t);
Close your connection to the file by closing the Tiff object.

close(t);
Test your work by reopening the TIFF file and getting the value of the Artist tag, using the
getTag method.

t = Tiff('myfile.tif', 'r');
getTag(t, "Artist")
ans =

Pablo Picasso

6

Images

6-8

close(t);

Creating TIFF File Subdirectories

1

Create some image data. This example reads image data from a JPEG file included with MATLAB.
The example then creates two reduced-resolution (thumbnail) versions of the image data.

imgdata = imread('ngc6543a.jpg');

o

of

°

s Reduce number of pixels by a half.
img half = imgdata(l:2:end,1l:2:end,:);

\© O\O

A\

s Reduce number of pixels by a third.

img third = imgdata(l:3:end,1:3:end,:);

Create a new TIFF file by constructing a Tiff object and specifying the name of the new file as
an argument. To create a file you must specify either write mode ('w') or append mode ('a"').
The Tiff constructor returns a handle to a Tiff object.

t = Tiff('my_subimage file.tif','w');

Set required TIFF tags using the setTag method of the Tiff object. These required tags specify
information about the image, such as its length and width. To break the image data into strips,
specify a value for the RowsPerStrip tag. To break the image data into tiles, use the
TileWidth and TileLength tags. The example creates a structure that contains tag names and
values and passes that to setTag. You can also set each tag individually.

To create subdirectories, you must set the SUbIFD tag, specifying the number of subdirectories
you want to create. Note that the number you specify isn't the value of the SUbIFD tag. The
number tells the Tiff software to create a SUbIFD that points to two subdirectories. The actual
value of the SUbIFD tag will be the byte offsets of the two subdirectories.

tagstruct.ImageLength = size(imgdata,l);
tagstruct.ImageWidth = size(imgdata,2);
tagstruct.Photometric = Tiff.Photometric.RGB;
tagstruct.BitsPerSample = 8;

tagstruct.SamplesPerPixel = 3;

tagstruct.RowsPerStrip = 16;

tagstruct.PlanarConfiguration = Tiff.PlanarConfiguration.Chunky;
tagstruct.Software = 'MATLAB';

tagstruct.SubIFD = 2 ; % required to create subdirectories
tagstruct % display tagstruct

setTag(t,tagstruct)

For information about supported TIFF tags and how to set their values, see “Setting Tag Values”
on page 6-9. For example, the Tiff object supports properties that you can use to set the

values of certain properties. This example uses the Tiff object PlanarConfiguration
property to specify the correct value for the chunky configuration:
Tiff.PlanarConfiguration.Chunky.

Write the image data and metadata to the current directory using the write method of the Tiff
object.

write(t,imgdata);

Set up the first subdirectory by calling the writeDirectory method. The writeDirectory
method sets up the subdirectory and make the new directory the current directory. Because you
specified that you wanted to create two subdirectories, writeDirectory sets up a subdirectory.

writeDirectory(t);

Exporting to Images

10

11

Set required tags, just as you did for the regular directory. According to the LibTIFF API, a
subdirectory cannot contain a SUbIFD tag.

tagstruct2.
tagstruct2.
tagstruct2.
tagstruct2.
tagstruct2.
tagstruct2.
tagstruct2.
tagstruct2.

tagstruct2

ImageLength = size(img_half,1);
ImageWidth = size(img_half,2);
Photometric = Tiff.Photometric.RGB;
BitsPerSample = 8;
SamplesPerPixel = 3;
RowsPerStrip = 16;
PlanarConfiguration =
Software = 'MATLAB';
% display tagstruct2

Tiff.PlanarConfiguration.Chunky;

setTag(t,tagstruct2)
Write the image data and metadata to the subdirectory using the write method of the Tiff
object.

write(t,img half);
Set up the second subdirectory by calling the writeDirectory method. The writeDirectory
method sets up the subdirectory and makes it the current directory.

writeDirectory(t);
Set required tags, just as you would for any directory. According to the LibTIFF API, a
subdirectory cannot contain a SUbIFD tag.

tagstruct3.
tagstruct3.
tagstruct3.
tagstruct3.
tagstruct3.
tagstruct3.
tagstruct3.
tagstruct3.

tagstruct3

ImageLength = size(img third,1);
ImageWidth = size(img third,2);
Photometric = Tiff.Photometric.RGB;
BitsPerSample = 8;
SamplesPerPixel = 3;
RowsPerStrip = 16;
PlanarConfiguration =
Software = 'MATLAB';
% display tagstruct3

Tiff.PlanarConfiguration.Chunky;

setTag(t,tagstruct3)
Write the image data and metadata to the subdirectory using the write method of the Tiff

object:

write(t,img_third);
Close your connection to the file by closing the Tiff object:

close(t);

Setting Tag Values

The following table lists all the TIFF tags that the Tiff ohject supports and includes information
about their MATLAB class and size. For certain tags, the table also indicates the set of values that the
Tiff object supports, which is a subset of all the possible values defined by the TIFF specification
You can use the Tiff properties structure to specify the supported values for these tags. For
example, use Tiff.Compression.JPEG to specify JPEG compression. See the Tiff reference page
for a full list of properties.

6-9

6 Images

Table 1: Supported TIFF Tags

TIFF Tag Class Size Supported Values |Notes

Artist char 1xN

BitsPerSample double |1x1 1,8,16,32,64 See Table 2 on page 6-
14

ColorMap double |256x3 |Values should be Photometric must be

normalized between |Palette
0-1. Stored internally
as uint16 values.

Compression double |1x1 None: 1 See Table 3 on page 6-
CCITTRLE: 2 15.

CCITTFax3:3
CCITTFax4: 4
LZW: 5

JPEG: 7
CCITTRLEW: 32771
PackBits: 32773
Deflate: 32946
AdobeDeflate: 8

Copyright char 1xN
DateTime char 1x19 Return value is
padded to 19 chars if
required.
DocumentName char 1xN
DotRange double |1x2 Photometric must be
Separated
ExtraSamples double |1xN Unspecified: 0 See Table 4 on page 6-
AssociatedAlpha: 1 |15.
UnassociatedAlpha
)
FillOrder double |1x1
GeoAsciiParamsTag char 1xN
GeoDoubleParamsTag double |1xN
GeoKeyDirectoryTag double |Nx4
Group30ptions double |1x1 Compression must be
CCITTFax3
Group40ptions double |1x1 Compression must be
CCITTFax4
HalfToneHints double |1x2
HostComputer char 1xn
ICCProfile uint8 1xn
ImageDescription char 1xn
Imagelength double |1x1

6-10

Exporting to Images

TIFF Tag Class Size Supported Values |Notes
ImageWidth double |1x1
InkNames char 1x Photometric must be
cell NumInk Separated
array s
InkSet double |1x1 CMYK: 1 Photometric must be
MultiInk: 2 Separated
JPEGQuality double |1x1 A value between 1 and
100
Make char 1xn
MaxSampleValue double |1x1 0-65,535
MinSampleValue double |1x1 0-65,535
Model char 1xN
ModelPixelScaleTag double |1x3
ModelTiepointTag double |Nx6
ModelTransformationMatrixTag double |1x16
NumberOfInks double |1x1 Must be equal to
SamplesPerPixel
Orientation double |1x1 TopLeft: 1
TopRight: 2
BottomRight: 3
BottomLeft: 4
LeftTop: 5
RightTop: 6
RightBottom: 7
LeftBottom: 8
PageName char 1xN
PageNumber double |1x2
Photometric double |1x1 MinIsWhite: 0 See Table 2 on page 6-
MinIsBlack: 1 14.
RGB: 2
Palette: 3
Mask: 4
Separated: 5
YCbCr: 6
CIELab: 8
ICCLab: 9
ITULab: 10
Photoshop uint8 1xN
PlanarConfiguration double |1x1 Chunky: 1
Separate: 2
PrimaryChromaticities double |1x6
ReferenceBlackWhite double |1x6

6-11

6 Images

TIFF Tag Class Size Supported Values |Notes
ResolutionUnit double |1x1
RICHTIFFIPTC uint8 1xN
RowsPerStrip double |1x1
RPCCoefficientTag double |1x92 92-element row vector |See Table 6 on page 6-
16
SampleFormat double |1x1 Uint: 1 See Table 2 on page 6-
Int: 2 13
IEEEFP: 3
SamplesPerPixel double |1x1
SMaxSampleValue double |1x1 Range of MATLAB
data type specified for
Image data
SMinSampleValue double |1x1 Range of MATLAB
data type specified for
Image data
Software char 1xN
StripByteCounts double |1xN Read-only
StripOffsets double |1xN Read-only
SubFileType double |1x1 Default: 0
ReducedImage: 1
Page: 2
Mask: 4
SubIFD double |1x1
TargetPrinter char 1xN
Thresholding double |1x1 BilLevel: 1 Photometric can be
HalfTone: 2 either: MinIsWhite
ErrorDiffuse: 3 MinIsBlack
TileByteCounts double |1xN Read-only
TileLength double |1x1 Must be a multiple of
16
TileOffsets double |1xN Read-only
TileWidth double |1x1 Must be a multiple of
16
TransferFunction double |See Each value should be |SamplePerPixel can
note! within 0-2°16-1 be either 1 or 3
WhitePoint double |1x2 Photometric can be:

RGB
Palette
YCbCr
CIELab
ICCLab
ITULab

6-12

Exporting to Images

TIFF Tag Class Size Supported Values |Notes

XMP char 1xn N>5

XPostion double |1x1

XResolution double |1x1

YCbCrCoefficents double |1x3 Photometric must be
YCbCr

YCbCrPositioning double |1x1 Centered: 1 Photometric must be

Cosited: 2 YCbCr

YCbCrSubSampling double |1x2 Photometric must be
YCbCr

YPosition double |1x1

YResolution double |1x1

ZipQuality double |1x1 Value between 1 and 9

1Size is 1x2"BitsPerSample or3x2”BitsPerSample.

Table 2: Valid SampleFormat Values for BitsPerSample Settings

BitsPerSample SampleFormat MATLAB Data Type

1 Uint logical

8 Uint, Int uint8, int8

16 Uint, Int uintl6, intl6

32 Uint, Int, IEEEFP uint32, int32, single
64 IEEEFP double

6-13

6 Images

Table 3: Valid SampleFormat Values for BitsPerSample and Photometric Combinations

BitsPerSample Values
Photometric 1 8 16 32 64
Values
MinIsWhite Uint Uint/Int Uint Uint IEEEFP
Int Int
IEEEFP
MinIsBlack Uint Uint/Int Uint Uint IEEEFP
Int Int
IEEEFP
RGB Uint Uint Uint IEEEFP
IEEEFP
Pallette Uint Uint
Mask Uint
Separated Uint Uint Uint IEEEFP
IEEEFP
YCbCr Uint Uint Uint IEEEFP
IEEEFP
CIELab Uint Uint
ICCLab Uint Uint
ITULab Uint Uint

6-14

Exporting to Images

Table 4: Valid SampleFormat Values for BitsPerSample and Compression Combinations

BitsPerSample Values
Compression 1 8 16 32 64
Values
None Uint Uint Uint Uint IEEEFP
Int Int Int
IEEEFP
CCITTRLE Uint
CCITTFax3 Uint
CCITTFax4 Uint
LZW Uint Uint Uint Uint IEEEFP
Int Int Int
IEEEFP
JPEG Uint
Int
CCITTRLEW Uint
PackBits Uint Uint Uint Uint IEEEFP
Int Int Int
IEEEFP
Deflate Uint Uint Uint Uint IEEEFP
Int Int Int
IEEEFP
AdobeDeflate |Uint Uint Uint Uint IEEEFP
Int Int Int
IEEEFP

Table 5: Valid SamplesPerPixel Values for Photometric Settings

Photometric Values SamplesPerPixel!
MinIsWhite 1+
MinIsBlack 1+
RGB 3+
Pallette

Mask

Separated 1+
YCbCr 3
CIELab 3+
ICCLab 3+
ITULab 3+

6-15

6 Images

6-16

Table 6: List of RPCCoefficientTag Value Descriptions

Index Value in 92-Element |Value Descriptions? Units
Vector
1 Root mean square bias error meters per horizontal axis
2 Root mean square random error meters per horizontal axis
3 Line offset pixels
4 Sample offset pixels
5 Geodetic latitude offset degrees
6 Geodetic longitude offset degrees
7 Geodetic height offset meters
8 Line scale factor pixels
9 Sample scale factor pixels
10 Geodetic latitude scale degrees
11 Geodetic longitude scale degrees
12 Geodetic height scale factor meters
13 through 32 Numerator coefficients of r(n), a

rational polynomial equation 2
33 through 52 Denominator coefficients of the

rational polynomial equation r(n)
53 through 72 Numerator coefficients of c¢(n), a

rational polynomial equation 2
73 through 92 Denominator coefficients of the

rational polynomial equation c(n)

1To specify the values in this vector using the RPCCoefficientTag object, see
RPCCoefficientTag (Mapping Toolbox) in the Mapping Toolbox™.

2Equations r(n) and c(n) represent the normalized row and column values of a generic rigorous
projection model.

See Also
Tiff

External Websites
. “Importing Images” on page 6-2

Scientific Data

* “Import CDF Files Using Low-Level Functions” on page 7-2

* “Represent CDF Time Values” on page 7-4

* “Import CDF Files Using High-Level Functions” on page 7-5

« “Export to CDF Files” on page 7-8

* “Map NetCDF API Syntax to MATLAB Syntax” on page 7-11

* “Import NetCDF Files and OPeNDAP Data” on page 7-13

* “Resolve Errors Reading OPeNDAP Data” on page 7-20

» “Export to NetCDF Files” on page 7-21

* “Importing Flexible Image Transport System (FITS) Files” on page 7-27

* “Import HDF5 Files” on page 7-28

» “Export to HDF5 Files” on page 7-34

* “Work with Non-ASCII Characters in HDF5 Files” on page 7-41

* “Import HDF4 Files Programmatically” on page 7-44

* “Read and Write Data Concurrently Using Single-Writer/Multiple-Reader (SWMR)” on page 7-47
* “Work with HDF5 Virtual Datasets (VDS)” on page 7-52

* “Read and Write HDF5 Datasets Using Dynamically Loaded Filters” on page 7-59
* “Map HDF4 to MATLAB Syntax” on page 7-64

* “Import HDF4 Files Using Low-Level Functions” on page 7-65

* “About HDF4 and HDF-EOS” on page 7-68

» “Export to HDF4 Files” on page 7-69

7 Scientific Data

Import CDF Files Using Low-Level Functions

7-2

This example shows how to use low-level functions to read data from a CDF file. The MATLAB® low-
level CDF functions correspond to routines in the CDF C API library. To use the MATLAB CDF low-
level functions effectively, you must be familiar with the CDF C interface.

Open CDF File

Open the sample CDF File, example. cdf.
cdfid = cdflib.open('example.cdf');

Get Information About File Contents

Use cdflib.inquire to get information about the number of variables in the file, the number of
global attributes, and the number of attributes with variable scope.

info = cdflib.inquire(cdfid)

info = struct with fields:
encoding: 'IBMPC_ENCODING'
majority: 'ROW _MAJOR'
maxRec: 23
numVars: 6
numvAttrs: 1
numgAttrs: 3

Get Information About Variables

Use cdflib.inqurieVar to get information about the individual variables in the file. Variable ID
numbers start at zero.

info = cdflib.inquireVar(cdfid,0)

info = struct with fields:
name: 'Time'
datatype: 'cdf epoch'
numElements: 1
dims: [
recVariance: 1
dimVariance: [

]
]

info = cdflib.inquireVar(cdfid,1)

info = struct with fields:
name: 'Longitude’
datatype: 'cdf intl’
numElements: 1
dims: [2 2
recVariance: 0
dimVariance: [1 0

]
]

Import CDF Files Using Low-Level Functions

Read Variable Data into Workspace

Read the data in a variable into the MATLAB workspace. The first variable contains CDF Epoch time
values. The low-level interface returns these as double values.

data_time = cdflib.getVarRecordData(cdfid,©,0)
data time = 6.3146e+13

Convert the time value to a date vector.

timeVec = cdflib.epochBreakdown(data time)
timeVec = 7x1

2001

[ocNoNoNoN TN T

Read Global Attribute from File

Determine which attributes in the CDF file are global.
info = cdflib.inquireAttr(cdfid,0)

info = struct with fields:
name: 'SampleAttribute’
scope: 'GLOBAL SCOPE'
maxgEntry: 4
maxEntry: -1

Read the value of the attribute. You must use the cdflib.getAttrgEntry function for global
attributes.

value = cdflib.getAttrgEntry(cdfid,0,0)

value =
'This is a sample entry.'

Close CDF File

Use cdflib.close to close the CDF file.
cdflib.close(cdfid);

See Also
cdflib | cdfread

External Websites
. CDF website

https://cdf.gsfc.nasa.gov/

7 Scientific Data

Represent CDF Time Values

This example shows how to extract date information from a CDF epoch object. CDF represents time
differently than MATLAB®. CDF represents date and time as the number of milliseconds since 1-
Jan-0000. This is called an epoch in CDF terminology. To represent CDF dates, MATLAB uses an
object called a CDF epoch object. MATLAB also can represent a date and time as a datetime value or
as a serial date number, which is the number of days since 0-Jan-0000. To access the time information
in a CDF object, convert to one of these other representations.

Read the sample CDF file, example. cdf.

data = cdfread('example.cdf');

whos
Name Size Bytes C(lass Attributes
data 24x6 23904 cell

cdfread returns a cell array.

Extract the date information from the first CDF epoch object returned in the cell array, data, using
the todatenum function.

m_datenum todatenum(data{l})

m_datenum = 730852

Convert the MATLAB serial date number to a datetime value.
m _datetime = datetime(m_datenum, 'ConvertFrom', 'datenum"')

m datetime = datetime
01-Jan-2001

See Also
todatenum | datetime | cdfread

Import CDF Files Using High-Level Functions

Import CDF Files Using High-Level Functions

This example shows how to use high-level MATLAB® functions to import the sample CDF file,
example. cdf. High-level functions provide a simpler interface to accessing CDF files.

Get Information About Contents of CDF File

Get information about the contents of a CDF file using the cdfinfo function. Because cdfinfo
creates temporary files, ensure that your current folder is writable before using the function.

info = cdfinfo('example.cdf")

info = struct with fields:
Filename: ‘'example.cdf’
FileModDate: '10-May-2010 21:35:01'
FileSize: 1310
Format: 'CDF'
FormatVersion: '2.7.0'
FileSettings: [1x1 struct]
Subfiles: {}
Variables: {6x6 cell}
GlobalAttributes: [1x1 struct]
VariableAttributes: [1x1 struct]

cdfinfo returns a structure containing general information about the file and detailed information
about the variables and attributes in the file. In this example, the Variables field indicates the
number of variables in the file.

View the contents of the Variables field.
vars = info.Variables

vars=6x6 cell array
Columns 1 through 5

{'Time" } {I 1 1]} {[24]} {'epoch’ } {"1/" }
{'Longitude’ } {[2 21} {[11} {'int8' } {'F/FT' }
{'Latitude"’ } {[2 21} {[11} {'int8' } {'F/TF' }
{'Data’ } {[22 4]} {[11} {'double'} {'T/TTT' }
{'multidimensional'} {[2 2 3 4]} {[11} {'uint8' } {'T/TTTT'}
{'Temperature' } {I[3 2]} {[10]} {'intl6"' } {'7T/T7' }
Column 6
{'Full'}
{'Full'}
{'Full'}
{'Full'}
{'Full'}
{'Full'}

The first variable, Time, consists of 24 records containing CDF epoch data. The next two variables,
Longitude and Latitude, each have only one associated record containing int8 data.

7-3

7 Scientific Data

Read All Data from CDF File

Use the cdfread function to read all of the data in the CDF file.

data = cdfread('example.cdf');

whos data
Name Size Bytes C(lass Attributes
data 24x6 23904 cell

cdfread returns the data in a cell array. The columns of data correspond to the variables. The rows
correspond to the records associated with a variable.

Read Data from Specific Variables

Read only the Longitude and Latitude variables from the CDF file. To read the data associated
with particular variables, use the 'Variable' parameter. Specify the names of the variables in a cell
array of character vectors. Variable names are case sensitive.

var_long lat = cdfread('example.cdf', 'Variable',{'Longitude', 'Latitude'});
whos var long lat

Name Size Bytes C(lass Attributes
var_long lat 1x2 216 cell

Combine Records to Speed Up Read Operations

By default, cdfread creates a cell array with a separate element for every variable and every record
in each variable, padding the records dimension to create a rectangular cell array. When working
with large data sets, you can speed up read operations by specifying the 'CombineRecords'
parameter to reduce the number of elements in the cell array that cdfread returns. When you set
the 'CombineRecords' parameter to true, the cdfread function creates a separate element for
each variable but saves time by putting all the records associated with a variable in a single cell array
element.

data_combined = cdfread('example.cdf', 'CombineRecords',true);

Compare the sizes of the cell arrays returned by cdfread.

whos data*
Name Size Bytes C(lass Attributes
data 24x6 23904 cell
data combined 1x6 8080 cell

Reading all the data from the example file without the CombineRecords parameter returns a 24-by-6
cell array, where the columns represent variables and the rows represent the records for each
variable. Reading the data from the same file with 'CombineRecords' set to true returns a 1-by-6
cell array.

When combining records, the dimensions of the data in the cell change. In this example, the Time
variable has 24 records, each of which is a scalar value. In the data combined cell array, the
combined element contains a 24-by-1 vector of values.

Import CDF Files Using High-Level Functions

Read CDF Epoch Values as Serial Date Numbers

By default, cdfread creates a MATLAB cdfepoch object for each CDF epoch value in the file. Speed
up read operations by setting the 'ConvertEpochToDatenum' name-value pair argument to true, to
return CDF epoch values as MATLAB serial date numbers.

data datenums = cdfread('example.cdf', 'ConvertEpochToDatenum',true);
whos data*

Name Size Bytes (lass Attributes
data 24x6 23904 cell
data_combined 1x6 8080 cell
data_datenums 24x6 19872 cell
See Also

cdfread | cdfinfo

External Websites
. CDF website

7-7

https://cdf.gsfc.nasa.gov/

7 Scientific Data

Export to CDF Files

This example shows how to export data to a CDF file using MATLAB® CDF low-level functions. The
MATLAB functions correspond to routines in the CDF C API library.

To use the MATLAB CDF low-level functions effectively, you must be familiar with the CDF C
interface. Also, CDF files do not support non-ASCII encoded inputs. Therefore, variable names,
attributes names, variable values, and attribute values must have 7-bit ASCII encoding.

Create New CDF File

Create a new CDF file named my file.cdf using cdflib.create. This function corresponds to the
CDF library C API routine, CDFcreateCDF.

cdfid = cdflib.create('my file.cdf');
cdflib.create returns a file identifier, cdfid.

Create Variables in CDF File

Create variables named Time and Latitude using cdflib.createVar. This function corresponds
to the CDF library C API routine, CDFcreatezVar.

time id = cdflib.createVar(cdfid, 'Time', 'cdf int4',1,[],true,[]);
lat id = cdflib.createVar(cdfid, 'Latitude', 'cdf int2',1,181,true,true);

cdflib.createVar returns a numeric identifier for each variable.

Create a variable named Image.

dimSizes = [20 10];
image id = cdflib.createVar(cdfid, 'Image', 'cdf int4',1,...
dimSizes,true, [true truel);

Write to Variables

Write data to the first and second records of the Time variable. Record numbers are zero-based. The
cdflib.putVarRecordData function corresponds to the CDF library C API routine,
CDFputzVarRecordData.

cdflib.putVarRecordData(cdfid, time id,0,int32(23));
cdflib.putVarRecordData(cdfid, time id,1,int32(24));

Write data to the Latitude variable.

data = int16([-90:901]);

recspec = [0 1 1];

dimspec = { 0 181 1 };
cdflib.hyperPutVarData(cdfid,lat id, recspec,dimspec,data);

Write data to the Image variable.

recspec [0 3 1];

dimspec = { [0 0], [20 10], [1 1] };

data = reshape(int32([0:599]), [20 10 3]);
cdflib.hyperPutVarData(cdfid,image id, recspec,dimspec,data);

Export to CDF Files

Write to Global Attribute

Create a global attribute named TITLE using cdflib.createAttr. This function corresponds to the
CDF library C API routine, CDFcreateAttr.

titleAttrNum = cdflib.createAttr(cdfid, 'TITLE', 'global scope');

cdflib.createAttr returns a numeric identifier for the attribute. Attribute numbers are zero-
based.

Write values to entries in the global attribute.

cdflib.putAttrEntry(cdfid,titleAttrNum,0Q, 'CDF CHAR', 'cdf Title');
cdflib.putAttrEntry(cdfid,titleAttrNum,1, 'CDF CHAR', 'Author');

Write to Attributes Associated with Variables

Create attributes associated with variables in the CDF file.

fieldAttrNum
unitsAttrNum

cdflib.createAttr(cdfid, 'FIELDNAM', 'variable scope');
cdflib.createAttr(cdfid, '"UNITS', 'variable scope');

Write to attributes of the Time variable.

cdflib.putAttrEntry(cdfid, fieldAttrNum,time id,...
'"CDF_CHAR', 'Time of observation');

cdflib.putAttrEntry(cdfid,unitsAttrNum,time id,...
'CDF_CHAR', 'Hours');

Get Information About CDF File

Get information about the file using cdflib.inquire. This function corresponds to the CDF library
C API routines, CDFinquireCDF and CDFgetNumgAttributes.

info = cdflib.inquire(cdfid)

info = struct with fields:
encoding: 'IBMPC_ENCODING'
majority: 'ROW_MAJOR'

maxRec: 2
numVars: 3
numvAttrs: 2
numgAttrs: 1

cdflib.inquire returns a structure array that includes information about the data encoding and
the number of variables and attributes in the file.

Close CDF File

Close the CDF File using cdflib. close. This function corresponds to the CDF library C API routine,
CDFcloseCDF. You must close a CDF to guarantee that all modifications you made since opening the
CDF are written to the file.

cdflib.close(cdfid);

See Also
cdflib

7 Scientific Data

External Websites
. CDF website

7-10

https://cdf.gsfc.nasa.gov/

Map NetCDF API Syntax to MATLAB Syntax

Map NetCDF API Syntax to MATLAB Syntax

MATLAB provides access to the routines in the NetCDF C library through a set of low-level functions
that are grouped into a package called netcdf. Use the functions in this package to read and write
data to and from NetCDF files. To use the MATLAB NetCDF functions effectively, you should be
familiar with the NetCDF C interface.

Usually, the MATLAB functions in the netcdf package correspond directly to routines in the NetCDF
C library. For example, the MATLAB function netcdf.open corresponds to the NetCDF library
routine nc_open. In some cases, one MATLAB function corresponds to a group of NetCDF library
functions. For example, instead of creating MATLAB versions of every NetCDF library

nc _put att type function, where type represents a data type, MATLAB uses one function,
netcdf.putAtt, to handle all supported data types.

To call one of the functions in the netcdf package, you must prefix the function name with the
package name. The syntax of the MATLAB functions is similar to the NetCDF library routines.
However, the NetCDF C library routines use input parameters to return data, while their MATLAB
counterparts use one or more return values. For example, this is the function signature of the
nc_open routine in the NetCDF library:

int nc_open (const char *path, int omode, int *ncidp); /* C syntax */
The NetCDF file identifier is returned in the ncidp argument.

This is the signature of the corresponding MATLAB function, netcdf.open:
ncid = netcdf.open(filename,mode)

Like its NetCDF C library counterpart, the MATLAB NetCDF function accepts a file name and a
constant that specifies the access mode. However, the MATLAB netcdf.open function returns the
file identifier, ncid, as a return value.

The MATLAB NetCDF functions automatically choose the MATLAB class that best matches the
NetCDF data type. This table shows the default mapping.

NetCDF Data Type MATLAB Class
NC_DOUBLE double
NC_FLOAT single
NC_INT64 (NetCDF-4 files only) int64
NC UINT64 (NetCDF-4 files only) uint64
NC INT int32
NC_UINT (NetCDF-4 files only) uint32
NC_SHORT intl6
NC_USHORT (NetCDF-4 files only) uintl6
NC BYTE int8
NC_UBYTE (NetCDF-4 files only) uint8
NC CHAR char
NC_STRING (NetCDF-4 files only) string

7-11

7 Scientific Data

NetCDF Data Type MATLAB Class
User-defined NC_VLEN types (NetCDF-4 files cell
only)

You can override the default and specify the class of the return data by using an optional argument to
the netcdf.getVar function.

See Also

More About

. “Import NetCDF Files and OPeNDAP Data” on page 7-13
. “Export to NetCDF Files” on page 7-21

External Websites
. NetCDF website

7-12

https://www.unidata.ucar.edu/software/netcdf/

Import NetCDF Files and OPeNDAP Data

Import NetCDF Files and OPeNDAP Data

Read data from a NetCDF file using the high-level functions, and then read the file by using the
netcdf package low-level functions.

In this section...

“MATLAB NetCDF Capabilities” on page 7-13

“Security Considerations When Connecting to an OPeNDAP Server” on page 7-13
“Read from NetCDF File Using High-Level Functions” on page 7-13

“Find All Unlimited Dimensions in NetCDF File” on page 7-15

“Read from NetCDF File Using Low-Level Functions” on page 7-16

MATLAB NetCDF Capabilities

Network Common Data Form (NetCDF) is a set of software libraries and machine-independent data
formats that support the creation, access, and sharing of array-oriented scientific data. NetCDF is
used by a wide range of engineering and scientific fields that want a standard way to store data so
that it can be shared.

MATLAB high-level functions simplify the process of importing data from a NetCDF file or an
OPeNDAP NetCDF data source. MATLAB low-level functions enable more control over the importing
process, by providing access to the routines in the NetCDF C library. To use the low-level functions
effectively, you should be familiar with the NetCDF C Interface. The NetCDF documentation is
available at the Unidata website.

Note For information about importing Common Data Format (CDF) files, which have a separate,
incompatible format, see “Import CDF Files Using Low-Level Functions” on page 7-2.

Security Considerations When Connecting to an OPeNDAP Server

It is highly recommended that you connect only to trusted OPeNDAP servers. In R2020b, the MATLAB
NetCDF interface connects only to trusted data access protocol (DAP) endpoints by default by
performing server certificate and host name validations. Previously, when you accessed an OPeNDAP
server, both the server certificate and host name validation were disabled by default.

If you would like to disable the server certificate and host name validation, add the following line in
a .dodsrc file in the current directory:

[mylocaltestserver.lab] HTTP.SSL.VALIDATE=0

This makes the MATLAB NetCDF interface connect to the OPeNDAP server whose name is specified
in the URI mylocaltestserver. lab without performing any validations on the server certificate or
host name. This change persists in future MATLAB sessions. For more information on OPeNDAP
server authentication and host name validation, see netCDF Authorization Support.

Read from NetCDF File Using High-Level Functions

This example shows how to display and read the contents of a NetCDF file, using high-level functions.

7-13

https://www.unidata.ucar.edu/software/netcdf/
https://docs.unidata.ucar.edu/netcdf-c/current/auth.html

7 Scientific Data

7-14

Display the contents of the
ncdisp('example.nc')

Source:
\\matlabroot
Format:
netcdf4
Global Attributes:
creation dat
Dimensions:
X

y
z

50
50
5

Variables:
avagadros_number
Size:
Dimensions:
Datatype:
Attributes:

temperature
Size:
Dimensions:
Datatype:
Attributes:

peaks
Size:
Dimensions:
Datatype:
Attributes:

Groups:
/gridl/

Attributes:
desc

Dimensions:
X
y .
time

Variables:

temp

Size
Dime
Data

/grid2/

Attributes:
desc

Dimensions:
X
y .
time

Variables:

temp

sample NetCDF file, example.nc.

\toolbox\matlab\demos\example.nc

e = '29-Mar-2010"'

1x1
double

description = 'this variable has no dimensions'
50x1

X

intl6

1.8
32
'degrees fahrenheight'

scale factor
add offset
units

50x50

X,y
intl6

description = 'z = peaks(50);"
ription = 'This is a group attribute.'
360

180
0 (UNLIMITED)

: []
nsions: x,y,time
type: intl6

ription = 'This is another group attribute.'

360
180
0 (UNLIMITED)

Import NetCDF Files and OPeNDAP Data

Size: [1
Dimensions: x,y,time
Datatype: intl6

ncdisp displays all the groups, dimensions, and variable definitions in the file. Unlimited dimensions
are identified with the label, UNLIMITED.

Read data from the peaks variable.
peaksData = ncread('example.nc', 'peaks');
Display information about the peaksData output.
whos peaksData
Name Size Bytes Class Attributes
peaksData 50x50 5000 intl6
Read the description attribute associated with the variable.
peaksDesc = ncreadatt('example.nc', 'peaks', 'description')
peaksDesc =
z = peaks(50);

Create a three-dimensional surface plot of the variable data. Use the value of the description
attribute as the title of the figure.

surf(double(peaksData))
title(peaksDesc);

Read the description attribute associated with the /grid1l/ group. Specify the group name as the
second input to the ncreadatt function.

g ncreadatt('example.nc','/gridl/', 'description')
g =
This is a group attribute.

Read the global attribute, creation date. For global attributes, specify the second input argument
toncreadattas '/'.

creation _date = ncreadatt('example.nc','/", 'creation date')

creation date

29-Mar-2010

Find All Unlimited Dimensions in NetCDF File

This example shows how to find all unlimited dimensions in a group in a NetCDF file, using high-level
functions.

Get information about the /grid2/ group in the sample file, example.nc, using the ncinfo
function.

7-15

7 Scientific Data

7-16

ginfo

ncinfo('example.nc','/grid2/")

ginfo
Filename: '\\matlabroot\toolbox\matlab\demos\example.nc'
Name: 'grid2'
Dimensions: [1x3 struct]
Variables: [1x1 struct]
Attributes: [1x1 struct]

Groups: []
Format: 'netcdf4’

ncinfo returns a structure array containing information about the group.
Get a vector of the Boolean values that indicate the unlimited dimensions for this group.
unlimDims = [ginfo.Dimensions.Unlimited]
unlimDims =

0 0 1
Use the unlimDims vector to display the unlimited dimension.
disp(ginfo.Dimensions(unlimDims))

Name: 'time'

Length: 0
Unlimited: 1

Read from NetCDF File Using Low-Level Functions

This example shows how to get information about the dimensions, variables, and attributes in a
NetCDF file using MATLAB low-level functions in the netcdf package. To use these functions
effectively, you should be familiar with the NetCDF C Interface.

Open NetCDF File

Open the sample NetCDF file, example. nc, using the netcdf.open function, with read-only access.

ncid netcdf.open('example.nc', 'NC NOWRITE")

ncid = 65536
netcdf.open returns a file identifier.

Get Information About NetCDF File

Get information about the contents of the file using the netcdf . inq function. This function
corresponds to the nc_inq function in the NetCDF library C API.

[ndims,nvars,natts,unlimdimID] = netcdf.inqg(ncid)

ndims = 3
nvars = 3
natts =1

Import NetCDF Files and OPeNDAP Data

unlimdimID = -1

netcdf.ing returns the number of dimensions, variables, and global attributes in the file, and
returns the identifier of the unlimited dimension in the file. An unlimited dimension can grow.

Get the name of the global attribute in the file using the netcdf.ingAttName function. This function
corresponds to the nc_ing_attname function in the NetCDF library C API. To get the name of an
attribute, you must specify the ID of the variable the attribute is associated with and the attribute
number. To access a global attribute, which is not associated with a particular variable, use the
constant 'NC_GLOBAL' as the variable ID.

global att name = netcdf.ingAttName(ncid,...
netcdf.getConstant('NC GLOBAL'),0)

global att name =
'creation date'

Get information about the data type and length of the attribute using the netcdf.ingAtt function.
This function corresponds to the nc_inqg att function in the NetCDF library C API. Again, specify
the variable ID using netcdf.getConstant ('NC GLOBAL').

[xtype,attlen] = netcdf.ingAtt(ncid, ...
netcdf.getConstant('NC GLOBAL'),global att name)

xtype = 2
attlen = 11
Get the value of the attribute, using the netcdf.getAtt function.

global att value = netcdf.getAtt(ncid,...
netcdf.getConstant('NC GLOBAL'),global att name)

global att value =
'29-Mar-2010'

Get information about the first dimension in the file, using the netcdf.ingDim function. This
function corresponds to the nc_inqg_dim function in the NetCDF library C API. The second input to
netcdf.ingDim is the dimension ID, which is a zero-based index that identifies the dimension. The
first dimension has the index value 0.

[dimname,dimlen] = netcdf.ingDim(ncid,0)

dimname =
e
dimlen = 50

netcdf.ingDim returns the name and length of the dimension.

Get information about the first variable in the file using the netcdf.inqgVar function. This function
corresponds to the nc_inqg_var function in the NetCDF library C API. The second input to
netcdf.inqgVar is the variable ID, which is a zero-based index that identifies the variable. The first
variable has the index value 0.

[varname,vartype,dimids,natts] = netcdf.ingVar(ncid,0)

varname =
'avagadros_number'

7-17

7 Scientific Data

7-18

vartype = 6
dimids =
[

natts =1

netcdf.inqgVar returns the name, data type, dimension ID, and the number of attributes associated
with the variable. The data type information returned in vartype is the numeric value of the NetCDF
data type constants, such as, NC_INT and NC BYTE. See the NetCDF documentation for information
about these constants.

Read Data from NetCDF File

Read the data associated with the variable, avagadros number, in the example file, using the
netcdf.getVar function. The second input to netcdf.getVar is the variable ID, which is a zero-
based index that identifies the variable. The avagadros number variable has the index value 0.

A number = netcdf.getVar(ncid,0)
A number = 6.0221e+23
View the data type of A_number.
whos A number
Name Size Bytes C(lass Attributes

A number 1x1 8 double

The functions in the netcdf package automatically choose the MATLAB class that best matches the
NetCDF data type, but you can also specify the class of the return data by using an optional argument
to netcdf.getVar.

Read the data associated with avagadros number and return the data as class single.

A number = netcdf.getVar(ncid,0, 'single');
whos A number

Name Size Bytes C(lass Attributes
A number 1x1 4 single

Close NetCDF File

Close the NetCDF file, example.nc.

netcdf.close(ncid)

See Also
ncread | ncreadatt | ncdisp | ncinfo

More About
. “Map NetCDF API Syntax to MATLAB Syntax” on page 7-11

Import NetCDF Files and OPeNDAP Data

External Websites
. NetCDF C Interface

7-19

https://www.unidata.ucar.edu/software/netcdf/

7 Scientific Data

Resolve Errors Reading OPeNDAP Data

When you have trouble reading OPeNDAP data, consider these factors.

* OPeNDAP data is being pulled over the network from a server on the Internet. Pulling large data
could be slow. Speed and reliability depend on their network connection.

* Failure to open an OPeNDAP link could have multiple causes.

* URL is invalid.
* Local machine firewall or network firewall does not allow any external connections.

¢ TLocal machine firewall or network firewall does not allow and external connections on the
OPeNDAP protocol.

¢ Remote server is down.

* Remote server will not serve the amount of data being requested. (In this case, you can read
data in subsets or chunks.)

* Remote server is incorrectly configured.

7-20

Export to NetCDF Files

Export to NetCDF Files

Create, merge, and write NetCDF files using high-level functions and the netcdf package low-level
functions.

In this section...

“MATLAB NetCDF Capabilities” on page 7-21

“Create New NetCDF File from Existing File or Template” on page 7-21
“Merge Two NetCDF Files” on page 7-22

“Write Data to NetCDF File Using Low-Level Functions” on page 7-24

MATLAB NetCDF Capabilities

Network Common Data Form (NetCDF) is a set of software libraries and machine-independent data
formats that support the creation, access, and sharing of array-oriented scientific data. NetCDF is
used by a wide range of engineering and scientific fields that want a standard way to store data so
that it can be shared.

MATLAB high-level functions make it easy to export data to a netCDF file. MATLAB low-level
functions provide access to the routines in the NetCDF C library. To use the low-level functions
effectively, you should be familiar with the NetCDF C Interface. The NetCDF documentation is
available at the Unidata website.

Note For information about exporting to Common Data Format (CDF) files, which have a separate
and incompatible format, see “Export to CDF Files” on page 7-8.

Create New NetCDF File from Existing File or Template

This example shows how to create a new NetCDF file that contains the variable, dimension, and
group definitions of an existing file, but uses a different format.

Create a file containing one variable, using the nccreate function.
nccreate('myfile.nc', "'myvar"')
Write data to the file.

A = 99;
ncwrite('myfile.nc', 'myvar',A)

Read the variable, dimension, and group definitions from the file using ncinfo. This information
defines the file's schema.

S = ncinfo('myfile.nc");
Get the format of the file.

file fmt = S.Format

7-21

https://www.unidata.ucar.edu/software/netcdf/

7 Scientific Data

7-22

file fmt =
'netcdf4 classic'

Change the value of the Format field in the structure, S, to another supported NetCDF format.

S.Format = 'netcdf4';

Create a new version of the file that uses the new format, using the ncwriteschema function. A
schema defines the structure of the file but does not contain any of the data that was in the original
file.

ncwriteschema('newfile.nc',S)
S = ncinfo('newfile.nc');

Note: When you convert a file's format using ncwriteschema, you might get a warning message if
the original file format includes fields that are not supported by the new format. For example, the
netcdf4 format supports fill values but the NetCDF classic format does not. In these cases,
ncwriteschema still creates the file, but omits the field that is undefined in the new format.

View the format of the new file.
new fmt = S.Format

new fmt =
‘netcdf4’

The new file, newfile.nc, contains the variable and dimension definitions of myfile.nc, but does
not contain the data.

Write data to the new file.

ncwrite('newfile.nc', 'myvar', A)

Merge Two NetCDF Files

This example shows how to merge two NetCDF files using high-level functions. The combined file
contains the variable and dimension definitions of the files that are combined, but does not contain
the data in these original files.

Create a NetCDF file named ex1.nc and define a variable named myvar. Then, write data to the
variable and display the file contents.

nccreate('exl.nc', 'myvar');
ncwrite('exl.nc', 'myvar',55)
ncdisp('exl.nc')

Source:
pwd\exl.nc
Format:
netcdf4 classic
Variables:
myvar
Size: 1x1
Dimensions:

Datatype: double

Export to NetCDF Files

Create a second file and define a variable named myvar2. Then, write data to the variable and display

the file contents.

nccreate('ex2.nc', '‘'myvar2');
ncwrite('ex2.nc', 'myvar2',99)
ncdisp('ex2.nc')

Source:
pwd\ex2.nc
Format:
netcdf4 classic
Variables:
myvar2
Size: 1x1
Dimensions:

Datatype: double

Get the schema of each of the files, using the ncinfo function.

infol

ncinfo('exl.nc')

infol

Filename: 'pwd\exl.nc'
Name: '/'
Dimensions: []
Variables: [1x1 struct]
Attributes: []
Groups: []
Format: 'netcdf4 classic'

info2 = ncinfo('ex2.nc')
info2 =

Filename: 'pwd\ex2.nc'
Name: '/'
Dimensions: []
Variables: [1x1 struct]
Attributes: []
Groups: []
Format: 'netcdf4 classic'

Create a new NetCDF file that uses the schema of the first example file, using the ncwriteschema

function. Then, display the file contents.

ncwriteschema('combined.nc',infol)
ncdisp('combined.nc')

Source:
pwd\combined.nc
Format:
netcdf4 classic
Variables:
myvar
Size: 1x1
Dimensions:

Datatype: double

7-23

7 Scientific Data

7-24

Attributes:
_Fillvalue = 9.969209968386869e+36

Add the schema from ex2.nc to combined. nc, using ncwriteschema.
ncwriteschema('combined.nc',info2)
View the contents of the combined file.

ncdisp('combined.nc")

Source:
pwd\combined.nc
Format:
netcdf4 classic
Variables:
myvar
Size: 1x1
Dimensions:
Datatype: double
Attributes:
_FillvValue = 9.969209968386869e+36
myvar2
Size: 1x1
Dimensions:
Datatype: double
Attributes:
_FillvValue = 9.969209968386869e+36

The file contains the myvar variable defined in the first example file and the myvar2 variable defined
in the second file.

Write Data to NetCDF File Using Low-Level Functions

This example shows how to use low-level functions to write data to a NetCDF file. The MATLAB® low-
level functions provide access to the routines in the NetCDF C library. MATLAB groups the functions
into a package, called netcdf. To call one of the functions in the package, you must prefix the
function name with the package name.

To use the MATLAB NetCDF functions effectively, you should be familiar with the information about
the NetCDF C Interface.

To run this example, you must have write permission in your current folder.

Create a 1-by-50 variable of numeric values named my data in the MATLAB workspace. The vector is
of class double.

my data = linspace(0,49,50);

Create a NetCDF file named my file.nc, using the netcdf. create function. The NOCLOBBER
parameter is a NetCDF file access constant that indicates that you do not want to overwrite an
existing file with the same name.

ncid = netcdf.create('my file.nc', '"NOCLOBBER');

Export to NetCDF Files

netcdf.create returns a file identifier, ncid. When you create a NetCDF file, the file opens in
define mode. You must be in define mode to define dimensions and variables.

Define a dimension in the file, using the netcdf.defDim function. This function corresponds to the
nc_def dim function in the NetCDF library C API. You must define dimensions in the file before you
can define variables and write data to the file. In this case, define a dimension named my dim with
length 50.

dimid = netcdf.defDim(ncid, 'my dim',50)
dimid = 0

netcdf.defDim returns a dimension identifier that corresponds to the new dimension. Identifiers
are zero-based indexes.

Define a variable named my var on the dimension, using the netcdf.defVar function. This function
corresponds to the nc_def var function in the NetCDF library C API. Specify the NetCDF data type
of the variable, in this case, NC_BYTE.

varid = netcdf.defVar(ncid, 'my var','NC BYTE',dimid)

varid = 0

netcdf.defVar returns a variable identifier that corresponds to my var.

Take the NetCDF file out of define mode. To write data to a file, you must be in data mode.
netcdf.endDef (ncid)

Write the data from the MATLAB workspace into the variable in the NetCDF file, using the
netcdf.putVar function. The data in the workspace is of class double but the variable in the
NetCDF file is of type NC_BYTE. The MATLAB NetCDF functions automatically do the conversion.

netcdf.putVar(ncid,varid,my data)
Close the file, using the netcdf. close function.
netcdf.close(ncid)

Verify that the data was written to the file by opening the file and reading the data from the variable
into a new variable in the MATLAB workspace.

ncid2 = netcdf.open('my file.nc', 'NC NOWRITE');
x = netcdf.getVar(ncid2,0);

View the data type of x.

whos x
Name Size Bytes C(lass Attributes
X 50x1 50 1int8

MATLAB stores data in column-major order while the NetCDF C API uses row-major order. X
represents the data stored in the NetCDF file and is therefore 50-by-1 even though the original vector
in the MATLAB workspace, my data, is 1-by-50. Because you stored the data in the NetCDF file as
NC_BYTE, MATLAB reads the data from the variable into the workspace as class int8.

7-25

7 Scientific Data

Close the file.

netcdf.close(ncid2)

See Also

More About
. “Map NetCDF API Syntax to MATLAB Syntax” on page 7-11

External Websites
. NetCDF C Interface

7-26

https://www.unidata.ucar.edu/software/netcdf/

Importing Flexible Image Transport System (FITS) Files

Importing Flexible Image Transport System (FITS) Files

The FITS file format is the standard data format used in astronomy, endorsed by both NASA and the
International Astronomical Union (IAU). For more information about the FITS standard, go to the
FITS Web site, https://fits.gsfc.nasa.gov/.

The FITS file format is designed to store scientific data sets consisting of multidimensional arrays (1-
D spectra, 2-D images, or 3-D data cubes) and two-dimensional tables containing rows and columns of
data. A data file in FITS format can contain multiple components, each marked by an ASCII text
header followed by binary data. The first component in a FITS file is known as the primary, which can
be followed by any number of other components, called extensions, in FITS terminology. For a
complete list of extensions, see fitsread.

To get information about the contents of a Flexible Image Transport System (FITS) file, use the
fitsinfo function. The fitsinfo function returns a structure containing the information about the
file and detailed information about the data in the file.

To import data into the MATLAB workspace from a Flexible Image Transport System (FITS) file, use
the fitsread function. Using this function, you can import the primary data in the file or you can
import the data in any of the extensions in the file, such as the Image extension, as shown in this
example.

1 Determine which extensions the FITS file contains, using the fitsinfo function.
info = fitsinfo('tst0012.fits"')
info =

Filename: 'matlabroot\tst0012.fits'
FileModDate: '12-Mar-2001 19:37:46'

FileSize: 109440

Contents: {'Primary' 'Binary Table' ‘'Unknown' ‘'Image' 'ASCII Table'}
PrimaryData: [1x1 struct]
BinaryTable: [1x1 struct]

Unknown: [1x1 struct]

Image: [1x1 struct]

AsciiTable: [1x1 struct]

The info structure shows that the file contains several extensions including the Binary Table,
ASCII Table, and Image extensions.
2 Read data from the file.

To read the Primary data in the file, specify the filename as the only argument:

pdata = fitsread('tst0012.fits');

To read any of the extensions in the file, you must specify the name of the extension as an
optional parameter. This example reads the Binary Table extension from the FITS file:

bindata = fitsread('tst@01l2.fits', 'binarytable');

7-27

https://fits.gsfc.nasa.gov/

7 Scientific Data

Import HDF5 Files

7-28

In this section...

“Overview” on page 7-28
“Import Data Using High-Level HDF5 Functions” on page 7-28
“Import Data Using Low-Level HDF5 Functions” on page 7-33

“Read HDF5 Data Set Using Dynamically Loaded Filters” on page 7-33

Overview

Hierarchical Data Format, Version 5, (HDF5) is a general-purpose, machine-independent standard for
storing scientific data in files, developed by the National Center for Supercomputing Applications
(NCSA). HDF5 is used by a wide range of engineering and scientific fields that want a standard way
to store data so that it can be shared. For more information about the HDF5 file format, read the
HDF5 documentation available at The HDF Group website (https://www.hdfgroup.org).

MATLAB provides two methods to import data from an HDF5 file:

* High-level functions that make it easy to import data, when working with numeric data sets

» Low-level functions that enable more complete control over the importing process, by providing
access to the routines in the HDF5 C library

Note For information about importing to HDF4 files, which have a separate, incompatible format,
see “Import HDF4 Files Programmatically” on page 7-44.

Import Data Using High-Level HDF5 Functions

MATLAB includes several functions that you can use to examine the contents of an HDF5 file and
import data from the file into the MATLAB workspace.

Note You can use only the high-level functions to read numeric data sets or attributes. To read non-
numeric data sets or attributes, you must use the low-level interface on page 7-33.

* h5disp — View the contents of an HDF5 file.

* h5info — Create a structure that contains all the metadata defining an HDF?5 file.

* h5read — Read data from a variable in an HDF5 file.

* h5readatt — Read data from an attribute associated with a variable in an HDF5 file or with the
file itself (a global attribute).

For details about how to use these functions, see their reference pages, which include examples. The
following sections illustrate some common usage scenarios.

Determine Contents of HDF5 File

HDF5 files can contain data and metadata, called attributes. HDF5 files organize the data and
metadata in a hierarchical structure similar to the hierarchical structure of a UNIX file system.

https://www.hdfgroup.org

Import HDF5 Files

In an HDF?5 file, the directories in the hierarchy are called groups. A group can contain other groups,

data sets, attributes, links, and data types. A data set is a collection of data, such as a

multidimensional numeric array or string. An attribute is any data that is associated with another
entity, such as a data set. A link is similar to a UNIX file system symbolic link. Links are a way to

reference objects without having to make a copy of the object.

Data types are a description of the data in the data set or attribute. Data types tell how to interpret

the data in the data set.

To get a quick view into the contents of an HDF5 file, use the h5disp function.

h5disp('example.h5")

HDF5 example.h5
Group '/'
Attributes:
'attrl': 97 98 99 100 101 102 103 104 105 0
'attr2': 2x2 H5T_INTEGER
Group '/gl'
Group '/gl/gl.1l'
Dataset 'dsetl.l1l.1'
Size: 10x10
MaxSize: 10x10
Datatype: H5T STD I32BE (int32)
ChunkSize: []
Filters: none
Attributes:
'attrl': 49 115 116 32 97 116 116 114 105 ...
'attr2': 50 110 100 32 97 116 116 114 105 ...
Dataset 'dsetl.l1l.2'
Size: 20
MaxSize: 20
Datatype: H5T STD I32BE (int32)
ChunkSize: []
Filters: none
Group '/gl/gl.2'
Group '/gl/9l.2/91.2.1'
Link 'slink'
Type: soft link

Group '/g2'
Dataset 'dset2.1l'
Size: 10
MaxSize: 10

Datatype: H5T IEEE F32BE (single)
ChunkSize: []
Filters: none
Dataset 'dset2.2'
Size: 5x3
MaxSize: 5x3
Datatype: H5T IEEE F32BE (single)
ChunkSize: []
Filters: none

To explore the hierarchical organization of an HDF5 file, use the h5info function. h5info returns a
structure that contains various information about the HDF5 file, including the name of the file.

7-29

7 Scientific Data

info
info

h5info('example.h5")

Filename: 'matlabroot\matlab\toolbox\matlab\demos\example.h5"'
Name: '/
Groups: [4x1 struct]
Datasets: []
Datatypes: []
Links: []
Attributes: [2x1 struct]

By looking at the Groups and Attributes fields, you can see that the file contains four groups and
two attributes. The Datasets, Datatypes, and Links fields are all empty, indicating that the root
group does not contain any data sets, data types, or links. To explore the contents of the sample
HDF5 file further, examine one of the structures in Groups. The following example shows the
contents of the second structure in this field.

level2 = info.Groups(2)
level2 =

Name: '/g2'
Groups: []
Datasets: [2x1 struct]
Datatypes:
Links:
Attributes:

—r—m———
[——

In the sample file, the group named /g2 contains two data sets. The following figure illustrates this
part of the sample HDF5 file organization.

!

g1 attr attr2 g2 g3 g4

dset2 1 dset2. 2

To get information about a data set, such as its name, dimensions, and data type, look at either of the
structures returned in the Datasets field.

datasetl = level2.Datasets(1)

datasetl =
Filename: 'matlabroot\example.h5'
Name: '/g2/dset2.1'

Rank: 1
Datatype: [1x1 struct]
Dims: 10

MaxDims: 10

Import HDF5 Files

Layout: 'contiguous'
Attributes: []
Links: []

Chunksize: []
Fillvalue: []

Import Data from HDFS5 File

To read data or metadata from an HDF5 file, use the h5read function. As arguments, specify the
name of the HDF5 file and the name of the data set. (To read the value of an attribute, you must use

h5readatt.)

To illustrate, this example reads the data set, /g2/dset2.1 from the HDF5 sample file example.h5.

data = h5read('example.h5','/g2/dset2.1")

data

.0000
.1000
.2000
.3000
.4000
.5000
.6000
.7000
. 8000
. 9000

O e N S Sy S e gy Sy W g

Map HDF5 Data Types to MATLAB Data Types

When the h5read function reads data from an HDF5 file into the MATLAB workspace, it maps HDF5
data types to MATLAB data types, as shown in the table below.

HDF5 Data Type

h5read Returns

Bit-field

Array of packed 8-bit integers

Float

MATLAB single and double types, provided that they occupy 64
bits or fewer

Integer types, signed and unsigned

Equivalent MATLAB integer types, signed and unsigned

Opaque

Array of uint8 values

Reference

Returns the actual data pointed to by the reference, not the
value of the reference.

Strings, fixed-length and variable
length

String arrays.

Enums Cell array of character vectors, where each enumerated value
is replaced by the corresponding member name

Compound 1-by-1 struct array; the dimensions of the data set are
expressed in the fields of the structure.

Arrays Array of values using the same data type as the HDF5 array.

For example, if the array is of signed 32-bit integers, the
MATLAB array will be of type int32.

7-31

7 Scientific Data

The example HDF?5 file included with MATLAB includes examples of all these data types.

For example, the data set /g3/string is a string.

h5disp('example.h5','/g93/string")
HDF5 example.h5
Dataset 'string'
Size: 2
MaxSize: 2
Datatype: H5T STRING
String Length: 3
Padding: H5T STR NULLTERM
Character Set: H5T CSET ASCII
Character Type: H5T C S1
ChunkSize: []
Filters: none
Fillvalue: '’

Now read the data from the file, MATLAB returns it as a cell array of character vectors.

S

h5read('example.h5','/g3/string"')

S =

Iab 1
Ide 1
>> whos s
Name Size Bytes C(lass Attributes
S 2x1 236 cell

The compound data types are always returned as a 1-by-1 struct. The dimensions of the data set are
expressed in the fields of the struct. For example, the data set /g3/compound?2D is a compound data
type.

h5disp('example.h5','/g3/compound2D')
HDF5 example.h5
Dataset 'compound2D'’
Size: 2x3
MaxSize: 2x3
Datatype: H5T COMPOUND
Member 'a': HS5T STD I8BLE (int8)
Member 'b': H5T IEEE F64LE (double)
ChunkSize: []
Filters: none
FillValue: H5T_COMPOUND

Now read the data from the file, MATLAB returns it as a 1-by-1 struct.
data = h5read('example.h5"','/g3/compound2D"')

data

a: [2x3 int8]
b: [2x3 double]

7-32

Import HDF5 Files

Import Data Using Low-Level HDF5 Functions

MATLAB provides direct access to dozens of functions in the HDF5 library with low-level functions
that correspond to the functions in the HDF5 library. In this way, you can access the features of the
HDFS5 library from MATLAB, such as reading and writing complex data types and using the HDF5
subsetting capabilities. For more information, see “Export Data Using MATLAB Low-Level HDF5
Functions” on page 7-35.

Read HDF5 Data Set Using Dynamically Loaded Filters

MATLAB supports reading and writing HDF5 data sets using dynamically loaded filters. The HDF
Group maintains a list of registered filters at Filters on their website.

To read a data set that has been written using a user-defined, third-party filter, follow these steps:

Install the HDF5 filter plugin on your system as a shared library or DLL.

2 Setthe HDF5 PLUGIN PATH environment variable to the folder containing the installed plugin
binary file. On a Windows system, use the setenv command in MATLAB. On a Linux or Mac
system, perform this action in a terminal window before you start MATLAB.

After you complete these steps, you can use the high-level or low-level MATLAB HDF5 functions to
read and access data sets that have been compressed using the third-party filter. For more
information, see HDF5 Dynamically Loaded Filters on The HDF Group website.

Linux Users Only: Rebuild Filter Plugins Using MATLAB HDF5 Shared Library

Starting in R2021b, in certain cases, Linux users using a filter plugin with callbacks to core HDF5
library functions must rebuild the plugin using the shipping MATLAB HDF5 shared library, /
matlab/bin/glnxa64/1libhdf5.s0.x.x.x. If you do not rebuild the plugin using this version of
the shared library, you might experience issues ranging from undefined behavior to crashes. For more
information, see Build HDF5 Filter Plugins on Linux Using MATLAB HDF5 Shared Library or GNU
Export Map.

See Also

Related Examples
. “Export to HDF5 Files” on page 7-34

7-33

https://portal.hdfgroup.org/display/support/Filters
https://support.hdfgroup.org/HDF5/doc/Advanced/DynamicallyLoadedFilters/HDF5DynamicallyLoadedFilters.pdf
https://www.mathworks.com/matlabcentral/answers/880033-build-hdf5-filter-plugins-on-linux-using-matlab-hdf5-shared-library-or-gnu-export-map
https://www.mathworks.com/matlabcentral/answers/880033-build-hdf5-filter-plugins-on-linux-using-matlab-hdf5-shared-library-or-gnu-export-map

7 Scientific Data

Export to HDF5 Files

7-34

In this section...

“Overview” on page 7-34

“Export Data Using MATLAB High-Level HDF5 Functions” on page 7-34
“Export Data Using MATLAB Low-Level HDF5 Functions” on page 7-35
“Write HDF5 Data Set Using Dynamically Loaded Filters” on page 7-40

Overview

Hierarchical Data Format, Version 5, (HDF5) is a general-purpose, machine-independent standard for
storing scientific data in files, developed by the National Center for Supercomputing Applications
(NCSA). HDF5 is used by a wide range of engineering and scientific fields that want a standard way
to store data so that it can be shared. For more information about the HDF5 file format, read the
HDF5 documentation available at The HDF Group website (https://www.hdfgroup.org).

MATLAB provides two methods to export data to an HDF5 file:

» High-level functions that simplify the process of exporting data, when working with numeric data
sets

* Low-level functions that provide a MATLAB interface to routines in the HDF5 C library

Note For information about exporting to HDF4 files, which have a separate and incompatible format,
see “Export to HDF4 Files” on page 7-69.

Export Data Using MATLAB High-Level HDF5 Functions

The easiest way to write data or metadata from the MATLAB workspace to an HDF5 file is to use
these MATLAB high-level functions.

Note You can use the high-level functions only with numeric data. To write nonnumeric data, you
must use the low-level interface on page 7-35.

* h5create — Create an HDF5 data set.
* h5write — Write data to an HDF5 data set.
* h5writeatt — Write data to an HDF5 attribute.

For details about how to use these functions, see their reference pages, which include examples. The
following sections illustrate some common usage scenarios.

Write Numeric Array to HDF5 Data Set
This example creates an array and then writes the array to an HDFS file.

1 Create a MATLAB variable in the workspace. This example creates a 5-by-5 array of uint8
values.

testdata = uint8(magic(5))

https://www.hdfgroup.org

Export to HDF5 Files

2 Create the HDF5 file and the data set, using h5create.

h5create('my example file.h5', '/datasetl', size(testdata))
3 Write the data to the HDF5 file.

h5write('my _example file.h5', '/datasetl',6 testdata)

Export Data Using MATLAB Low-Level HDF5 Functions

MATLAB provides direct access to dozens of functions in the HDF5 library with low-level functions
that correspond to the functions in the HDF5 library. In this way, you can access the features of the
HDFS5 library from MATLAB, such as reading and writing complex data types and using the HDF5
subsetting capabilities.

The HDF?5 library organizes the library functions into collections, called interfaces. For example, all
the routines related to working with files, such as opening and closing, are in the H5F interface,
where F stands for file. MATLAB organizes the low-level HDF5 functions into classes that correspond
to each HDF5 interface. For example, the MATLAB functions that correspond to the HDF5 file
interface (H5F) are in the @HS5F class folder.

The following sections provide more detail about how to use the MATLAB HDF5 low-level functions.

Note This topic does not describe all features of the HDF5 library or explain basic HDF5
programming concepts. To use the MATLAB HDF5 low-level functions effectively, refer to the official
HDF5 documentation available at https://www.hdfgroup.org.

Map HDF5 Function Syntax to MATLAB Function Syntax

In most cases, the syntax of the MATLAB low-level HDF5 functions matches the syntax of the
corresponding HDF5 library functions. For example, the following is the function signature of the
H5Fopen function in the HDF5 library. In the HDF5 function signatures, hid t and herr_t are
HDF5 types that return numeric values that represent object identifiers or error status values.

hid t H5Fopen(const char *name, unsigned flags, hid t access id) /* C syntax */

In MATLAB, each function in an HDF5 interface is a method of a MATLAB class. The following shows
the signature of the corresponding MATLAB function. First note that, because it's a method of a class,
you must use the dot notation to call the MATLAB function: H5F . open. This MATLAB function
accepts the same three arguments as the HDF5 function: a character vector containing the name, an
HDF5-defined constant for the flags argument, and an HDF5 property list ID. You use property lists to
specify characteristics of many different HDF5 objects. In this case, it's a file access property list.
Refer to the HDF5 documentation to see which constants can be used with a particular function and
note that, in MATLAB, constants are passed as character vectors.

file id = H5F.open(name, flags,plist id)

There are, however, some functions where the MATLAB function signature is different than the
corresponding HDF5 library function. In general, keep the following differences in mind when using
the MATLAB low-level HDF5 functions.

* HDF5 output parameters become MATLAB return values — Some HDF5 library functions
use function parameters to return data. Because MATLAB functions can return multiple values,
these output parameters become return values. To illustrate, the HDF5 H5Dread function returns
data in the buf parameter.

7-35

https://www.hdfgroup.org

7 Scientific Data

7-36

herr t H5Dread(hid t dataset id,
hid t mem type id,
hid t mem space id,
hid t file space id,
hid t xfer plist id,
void * buf) /* C syntax */

The corresponding MATLAB function changes the output parameter buf into a return value. Also,
in the MATLAB function, the nonzero or negative value herr_t return values become MATLAB
errors. Use MATLAB try-catch statements to handle errors.
buf = H5D.read(dataset id,

mem_ type id,

mem space id,

file space id,

plist id)

* String length parameters are unnecessary — The length parameter, used by some HDF5
library functions to specify the length of a string parameter, is not necessary in the corresponding
MATLAB function. For example, the H5Aget name function in the HDF5 library includes a buffer
as an output parameter and the size of the buffer as an input parameter.
ssize_t H5Aget_name(hid_t attr_id,

size t buf_size,
char *buf) /* C syntax */

The corresponding MATLAB function changes the output parameter buf into a return value and
drops the buf size parameter.

buf = H5A.get name(attr_id)

* Use an empty array to specify NULL — Wherever HDF5 library functions accept the value
NULL, the corresponding MATLAB function uses empty arrays ([]). For example, the HSDfill
function in the HDF5 library accepts the value NULL in place of a specified fill value.

herr_t H5Dfill(const void *fill,
hid t fill type id, void *buf,
hid t buf_ type id,
hid t space id) /* C syntax */

When using the corresponding MATLAB function, you can specify an empty array ([]) instead of
NULL.

* Use cell arrays to specify multiple constants — Some functions in the HDF5 library require
you to specify an array of constants. For example, in the H5Screate simple function, to specify
that a dimension in the data space can be unlimited, you use the constant H5S UNLIMITED for the
dimension in maxdims. In MATLAB, because you pass constants as character vectors, you must
use a cell array of character vectors to achieve the same result. The following code fragment
provides an example of using a cell array of character vectors to specify this constant for each
dimension of this data space.

ds _id = H5S.create simple(2,[3 4],{'H5S UNLIMITED' 'H5S UNLIMITED'});
Map Between HDF5 Data Types and MATLAB Data Types

When the HDF5 low-level functions read data from an HDF5 file or write data to an HDF5 file, the
functions map HDF5 data types to MATLAB data types automatically.

For atomic data types, such as commonly used binary formats for numbers (integers and floating
point) and characters (ASCII), the mapping is typically straightforward because MATLAB supports
similar types. See the table Map Between HDF5 Atomic Data Types and MATLAB Data Types for a list
of these mappings.

Export to HDF5 Files

Map Between HDF5 Atomic Data Types and MATLAB Data Types
HDF5 Atomic Data Type MATLAB Data Type

Bit-field Array of packed 8-bit integers
Float MATLAB single and double types, provided that they occupy 64 bits or
fewer

Integer types, signed and Equivalent MATLAB integer types, signed and unsigned
unsigned

Opaque Array of uint8 values
Reference Array of uint8 values
String MATLAB string arrays

For composite data types, such as aggregations of one or more atomic data types into structures,
multidimensional arrays, and variable-length data types (one-dimensional arrays), the mapping is
sometimes ambiguous with reference to the HDF5 data type. In HDF5, a 5-by-5 data set containing a
single uint8 value in each element is distinct from a 1-by-1 data set containing a 5-by-5 array of
uint8 values. In the first case, the data set contains 25 observations of a single value. In the second
case, the data set contains a single observation with 25 values. In MATLAB both of these data sets are
represented by a 5-by-5 matrix.

If your data is a complex data set, you might need to create HDF5 data types directly to make sure
that you have the mapping you intend. See the table Map Between HDF5 Composite Data Types and
MATLAB Data Types for a list of the default mappings. You can specify the data type when you write
data to the file using the H5Dwrite function. See the HDF5 data type interface documentation for
more information.

Map Between HDF5 Composite Data Types and MATLAB Data Types
HDF5 Composite Data MATLAB Data Type

Type

Array Extends the dimensionality of the data type which it contains. For
example, an array of integers in HDF5 maps onto a two-dimensional
array of integers in MATLAB.

Compound MATLAB structure. Note: All structures representing HDF5 data in
MATLAB are scalar.

Enumeration Array of integers which each have an associated name

Variable Length MATLAB 1-D cell arrays

Report Data Set Dimensions

The MATLAB low-level HDF5 functions report data set dimensions and the shape of data sets
differently than the MATLAB high-level functions. For ease of use, the MATLAB high-level functions
report data set dimensions consistent with MATLAB column-major indexing. To be consistent with the
HDFS5 library, and to support the possibility of nested data sets and complicated data types, the
MATLAB low-level functions report array dimensions using the C row-major orientation.

Write Data to HDF5 Data Set Using MATLAB Low-Level Functions

This example shows how to use the MATLAB® HDF5 low-level functions to write a data set to an
HDF?5 file and then read the data set from the file.

7-37

7 Scientific Data

7-38

Create a 2-by-3 array of data to write to an HDF5 file.

testdata = [1 3 5; 2 4 6];

Create a new HDFS file named my file.h5 in the system temp folder. Use the MATLAB

H5F . create function to create a file. This MATLAB function corresponds to the HDF5 function,
H5Fcreate. As arguments, specify the name you want to assign to the file, the type of access you
want to the file ("H5F ACC_TRUNC' in this case), and optional additional characteristics specified by
a file creation property list and a file access property list. In this case, use default values for these
property lists (' HS5P_DEFAULT'). Pass C constants to the MATLAB function as character vectors.

filename = fullfile(tempdir,'my file.h5");
fileID = H5F.create(filename, 'H5F ACC TRUNC', 'H5P DEFAULT', '"H5P DEFAULT");

H5F . create returns a file identifier corresponding to the HDF5 file.

Create the data set in the file to hold the MATLAB variable. In the HDF5 programming model, you
must define the data type and dimensionality (data space) of the data set as separate entities. First,
use the H5T. copy function to specify the data type used by the data set, in this case, double. This
MATLAB function corresponds to the HDF5 function, H5Tcopy.

datatypeID = H5T.copy('H5T NATIVE DOUBLE");
H5T. copy returns a data type identifier.

Create a data space using H5S.create simple, which corresponds to the HDF5 function,
H5Screate simple. The first input, 2, is the rank of the data space. The second input is an array
specifying the size of each dimension of the dataset. Because HDF5 stores data in row-major order
and the MATLAB array is organized in column-major order, you should reverse the ordering of the
dimension extents before using H5Screate simple to preserve the layout of the data. You can use
fliplr for this purpose.

dims = size(testdata);
dataspaceID = H5S.create simple(2,fliplr(dims),[]);

H5S.create simple returns a data space identifier, dataspaceID. Note that other software
programs that use row-major ordering (such as HSDUMP from the HDF Group) might report the size of
the dataset to be 3-by-2 instead of 2-by-3.

Create the data set using H5D . create, which corresponds to the HDF5 function, H5Dcreate.
Specify the file identifier, the name you want to assign to the data set, the data type identifier, the
data space identifier, and a data set creation property list identifier as arguments. 'H5P _DEFAULT'
specifies the default property list settings.

dsetname = 'my dataset';
datasetID = H5D.create(filelID,dsetname,datatypelD,dataspaceID, 'H5P DEFAULT');

H5D. create returns a data set identifier, datasetID.

Write the data to the data set using H5D .write, which corresponds to the HDF5 function, H5Dwrite.
The input arguments are the data set identifier, the memory data type identifier, the memory space
identifier, the data space identifier, the transfer property list identifier and the name of the MATLAB
variable to write to the data set. The constant, 'HS5ML DEFAULT', specifies automatic mapping to
HDF5 data types. The constant, 'H5S ALL', tells H5D.write to write all the data to the file.

H5D.write(datasetID, '"H5ML DEFAULT', 'H5S ALL','H5S ALL',
"H5P DEFAULT',testdata);

Export to HDF5 Files

Close the data set, data space, data type, and file objects. If used inside a MATLAB function, these
identifiers are closed automatically when they go out of scope.

H5D.close
H5S.close
H5T.close
H5F.close

datasetID);
dataspacelD);
datatypelD);
filelD);

Py

Open the HDF5 file in order to read the data set you wrote. Use H5F . open to open the file for read-
only access. This MATLAB function corresponds to the HDF5 function, HSFopen.

fileID = H5F.open(filename, '"H5F ACC RDONLY', '"H5P DEFAULT");

Open the data set to read using H5D . open, which corresponds to the HDF5 function, H5Dopen.
Specify as arguments the file identifier and the name of the data set, defined earlier in the example.

datasetID = H5D.open(filelD,dsetname);

Read the data into the MATLAB workspace using H5D . read, which corresponds to the HDF5
function, H5Dread. The input arguments are the data set identifier, the memory data type identifier,
the memory space identifier, the data space identifier, and the transfer property list identifier.

returned data = H5D.read(datasetID, 'HSML DEFAULT',
'"H5S_ALL', 'H5S ALL', 'H5P_DEFAULT');

Compare the original MATLAB variable, testdata, with the variable just created, returned data.

isequal(testdata, returned data)

ans = logical
1

The two variables are the same.

Write Large Data Set

To write a large data set, you must use the chunking capability of the HDF5 library. Create a property
list and use the H5P.set chunk function to set the chunk size in the property list. Suppose the
dimensions of your data set are [2"16 2716] and the chunk size is 1024-by-1024. You then pass the
property list as the last argument to the data set creation function, H5D. create, instead of using the
H5P DEFAULT value.

dims = [2"16 2°16];
plistID = H5P.create('H5P_DATASET CREATE'); % create property list

chunk size = min([1024 1024], dims); % define chunk size
H5P.set_chunk(plistID, fliplr(chunk_size)); % set chunk size in property list

datasetID = H5D.create(fileID, dsetname, datatypeID, dataspaceID, plistID);
Preserve Correct Layout of Your Data

When you use any of the following functions that deal with dataspaces, you should flip dimension
extents to preserve the correct layout of the data.

* H5D.set extent

7-39

7 Scientific Data

7-40

* H5P.get chunk

* H5P.set chunk

* H5S.create simple

* H5S.get simple extent dims
* H5S.select hyperslab

* H5T.array create

* H5T.get array dims

Write HDF5 Data Set Using Dynamically Loaded Filters

MATLAB supports reading and writing HDF5 data sets using dynamically loaded filters. The HDF
Group maintains a list of registered filters at Filters on The HDF Group website.

To write a data set using a third-party filter, follow these steps:

Install the HDF5 filter plugin on your system as a shared library or DLL.

2 Obtain the unique filter identifier for the filter plugin assigned by The HDF Group from the list of
registered filters.

3 Setthe HDF5 PLUGIN PATH environment variable to the folder containing the installed plugin

binary file. On a Windows system, use the setenv command in MATLAB. On a Linux or Mac
system, perform this action in a terminal window before you start MATLAB.

After you complete these steps, you can use the high-level or low-level MATLAB HDF5 functions to
create and write data sets using the third-party filter specified by its unique filter identifier. For more
information, see HDF5 Dynamically Loaded Filters.

Linux Users Only: Rebuild Filter Plugins Using MATLAB HDF5 Shared Library

Starting in R2021b, in certain cases, Linux users using a filter plugin with callbacks to core HDF5
library functions must rebuild the plugin using the shipping MATLAB HDF5 shared library, /
matlab/bin/glnxa64/1libhdf5.s0.x.x.x. If you do not rebuild the plugin using this version of
the shared library, you might experience issues ranging from undefined behavior to crashes. For more
information, see Build HDF5 Filter Plugins on Linux Using MATLAB HDF5 Shared Library or GNU
Export Map.

See Also

Related Examples
. “Import HDF5 Files” on page 7-28

https://portal.hdfgroup.org/display/support/Filters
https://support.hdfgroup.org/HDF5/doc/Advanced/DynamicallyLoadedFilters/HDF5DynamicallyLoadedFilters.pdf
https://www.mathworks.com/matlabcentral/answers/880033-build-hdf5-filter-plugins-on-linux-using-matlab-hdf5-shared-library-or-gnu-export-map
https://www.mathworks.com/matlabcentral/answers/880033-build-hdf5-filter-plugins-on-linux-using-matlab-hdf5-shared-library-or-gnu-export-map

Work with Non-ASCII Characters in HDF5 Files

Work with Non-ASCII Characters in HDF5 Files

To enable sharing of HDF5 files across multiple locales, MATLAB supports the use of non-ASCII
characters in HDF5 files. This example shows you how to:

* Create HDF5 files containing data set and attribute names that have non-ASCII characters using
the high-level functions.

* Create variable-length string data sets containing non-ASCII characters using the low-level
functions.

Create Data Set and Attribute Names Containing Non-ASCIlI Characters

Create an HDF5 file containing a data set name and an attribute name that contains non-ASCII
characters. To check if the data set and attribute names appear as expected, write data to the data
set, and display the file information.

Create a data set with a name (/#{#E£) that includes non-ASCII characters.

dsetName ['/' char([25968 25454 38598])1];

dsetDims [5 21;

h5create('outfile.h5',['/grpl' dsetName],dsetDims, ...
'TextEncoding', 'UTF-8");

Write data to the file.

dataToWrite = rand(dsetDims);
h5write('outfile.h5"',['/grpl' dsetName],dataToWrite);

Create an attribute name ({44 &) that includes non-ASCII characters and assign a value to the
attribute.

attrName = char([25967 25453 38597]);
hSwriteatt('outfile.h5','/"',attrName,'I am an attribute', ...
'TextEncoding', 'UTF-8");

Display information about the file and check if the attribute name and data set name appear correctly.
h5disp('outfile.h5")

HDF5 outfile.h5
Group '/'
Attributes:
'/EBELTE': 'I am an attribute'
Group '/grpl'
Dataset '#iELE"
Size: 5x2
MaxSize: 5x2
Datatype: H5T IEEE F64LE (double)
ChunkSize: []
Filters: none
FillValue: 0.000000

7-41

7 Scientific Data

Create Variable-Length String Data Containing Non-ASCIl Characters

Create a variable-length string data set to store data containing non-ASCII characters using the low-
level functions. Write the data to the data set. Check if the data is written correctly.

Create data containing non-ASCII characters.

dataToWrite = {char([12487 12540 12479]) 'hello'’ .
char([1605 1585 1581 1576 1575]);

'world' char([1052 1080 1088]1) .

char([954 972 963 956 959 962])};

disp(dataToWrite)
'F—4" "hello' 'L e !
'world' "Mup' 'k6opoG"'

To write this data into a file, create an HDF5 file, define a group name, and a data set name within
the group.

Create the HDF5 file.

fileName = 'outfile.h5';
fileID = H5F.create(fileName, 'H5F ACC TRUNC', ...
"H5P_DEFAULT', 'H5P DEFAULT');

To create the group containing non-ASCII characters in its name, first, configure the link creation
property.

lcplID = H5P.create('H5P LINK CREATE');
H5P.set char_encoding(lcplID,H5ML.get constant value('H5T CSET UTF8'));
plist = 'H5P DEFAULT';

Then, create the group (¥)L— 7).

grpName = char([12464 12523 12540 12503]);
grpID = H5G.create(fileID,grpName, lcplID,plist,plist);

Create a data set that contains variable-length string data with non-ASCII characters. First, configure
its data type.

typeID = H5T.copy('H5T C S1');
H5T.set size(typelID, 'H5T VARIABLE');
H5T.set cset(typeID,H5ML.get constant value('H5T CSET UTF8'));

Now create the data set by specifying its name, data type, and dimensions.

dsetName 'datasetUtf8';

dataDims [2 31;

h5DatabDims = fliplr(dataDims);

h5MaxDims = h5DataDims;

spaceID = H5S.create simple(2,h5DatabDims, h5MaxDims);

dsetID = H5D.create(grpID,dsetName,typelD,spacelD,...
"H5P_DEFAULT', 'H5P_DEFAULT', 'H5P_DEFAULT'");

Write the data to the data set.

H5D.write(dsetID, 'H5ML DEFAULT', 'H5S ALL',...
"H5S ALL', "H5P DEFAULT',dataToWrite);

7-42

Work with Non-ASCII Characters in HDF5 Files

Read the data back.
dataRead = h5read('outfile.h5',['/"' grpName '/' dsetNamel)

dataRead

2x3 cell array

{'7—%2"'} {'hello'} {'Lo ' }
{'world'} {'Mup*' } {'kbéopog"'}

Check if data in the file matches the written data.
isequal(dataRead,dataToWrite)
ans =
logical
1
Close ids.

H5D.close(dsetID);
H5S.close(spacelD);
H5T.close(typelD);
H5G.close(grpID);
H5P.close(lcplID);
H5F.close(filelD);

See Also
h5create | hSwriteatt | h5info | h5disp

7-43

7 Scientific Data

Import HDF4 Files Programmatically

In this section...

“Overview” on page 7-44
“Using the MATLAB HDF4 High-Level Functions” on page 7-44

Overview

Hierarchical Data Format (HDF4) is a general-purpose, machine-independent standard for storing
scientific data in files, developed by the National Center for Supercomputing Applications (NCSA).
For more information about these file formats, read the HDF documentation at the HDF Web site
(www. hdfgroup.org).

HDF-EOS is an extension of HDF4 that was developed by the National Aeronautics and Space
Administration (NASA) for storage of data returned from the Earth Observing System (EOS). For
more information about this extension to HDF4, see the HDF-EOS documentation at the NASA Web
site (www. hdfeos.org).

MATLAB includes several options for importing HDF4 files, discussed in the following sections.

Note For information about importing HDF5 data, which is a separate, incompatible format, see
“Import HDF5 Files” on page 7-28.

Using the MATLAB HDF4 High-Level Functions

To import data from an HDF or HDF-EOS file, you can use the MATLAB HDF4 high-level function
hdfread. The hdfread function provides a programmatic way to import data from an HDF4 or HDF-
EOS file that still hides many of the details that you need to know if you use the low-level HDF
functions, described in “Import HDF4 Files Using Low-Level Functions” on page 7-65.

This section describes these high-level MATLAB HDF functions, including

* “Using hdfinfo to Get Information About an HDF4 File” on page 7-44
* “Using hdfread to Import Data from an HDF4 File” on page 7-45

To export data to an HDF4 file, you must use the MATLAB HDF4 low-level functions.
Using hdfinfo to Get Information About an HDF4 File

To get information about the contents of an HDF4 file, use the hdfinfo function. The hdfinfo
function returns a structure that contains information about the file and the data in the file.

This example returns information about a sample HDF4 file included with MATLAB:
info = hdfinfo('example.hdf")
info =

Filename: 'matlabroot\example.hdf'

Attributes: [1x2 struct]
Vgroup: [1x1 struct]

7-44

https://www.hdfgroup.org
https://www.hdfeos.org

Import HDF4 Files Programmatically

SDS: [1x1 struct]
Vdata: [1x1 struct]

To get information about the data sets stored in the file, look at the SDS field.
Using hdfread to Import Data from an HDF4 File

To use the hdfread function, you must specify the data set that you want to read. You can specify the
filename and the data set name as arguments, or you can specify a structure returned by the
hdfinfo function that contains this information. The following example shows both methods. For
information about how to import a subset of the data in a data set, see “Reading a Subset of the Data
in a Data Set” on page 7-46.

1 Determine the names of data sets in the HDF4 file, using the hdfinfo function.

info hdfinfo('example.hdf")

info

Filename: 'matlabroot\example.hdf’
Attributes: [1x2 struct]
Vgroup: [1x1 struct]
SDS: [1x1 struct]
Vdata: [1x1 struct]

To determine the names and other information about the data sets in the file, look at the contents
of the SDS field. The Name field in the SDS structure gives the name of the data set.

dsets = info.SDS

dsets

Filename: 'example.hdf'
Type: 'Scientific Data Set'
Name: 'Example SDS'
Rank: 2
DataType: 'intl6'
Attributes: []
Dims: [2x1 struct]

Label: {}
Description: {}
Index: 0

2 Read the data set from the HDF4 file, using the hdf read function. Specify the name of the data
set as a parameter to the function. Note that the data set name is case sensitive. This example
returns a 16-by-5 array:

dset = hdfread('example.hdf', 'Example SDS')

dset =
3 4 5 6 7
4 5 6 7 8
5 6 7 8 9
6 7 8 9 10
7 8 9 10 11
8 9 10 11 12
9 10 11 12 13
10 11 12 13 14

7-45

7 Scientific Data

7-46

11 12 13 14 15
12 13 14 15 16
13 14 15 16 17
14 15 16 17 18
15 16 17 18 19
16 17 18 19 20
17 18 19 20 21
18 19 20 21 22

Alternatively, you can specify the specific field in the structure returned by hdfinfo that
contains this information. For example, to read a scientific data set, use the SDS field.

dset = hdfread(info.SDS);

Reading a Subset of the Data in a Data Set

To read a subset of a data set, you can use the optional 'index' parameter. The value of the index

parameter is a cell array of three vectors that specify the location in the data set to start reading, the
skip interval (e.g., read every other data item), and the amount of data to read (e.g., the length along
each dimension). In HDF4 terminology, these parameters are called the start, stride, and edge values.

For example, this code

* Starts reading data at the third row, third column ([3 3]).
* Reads every element in the array ([]).
* Reads 10 rows and 2 columns ([10 21]).

subset = hdfread('Example.hdf', 'Example SDS',...
"Index',{[3 3],[1,[10 2 1})

subset =

7 8

8 9

9 10
10 11
11 12
12 13
13 14
14 15
15 16
16 17

Read and Write Data Concurrently Using Single-Writer/Multiple-Reader (SWMR)

Read and Write Data Concurrently Using Single-Writer/
Multiple-Reader (SWMR)

Overview

The Single-Writer/Multiple-Reader (SWMR) feature of the MATLAB low-level HDF5 function interface
allows you to append data to datasets or overwrite existing data while several reader processes
concurrently read the new data from the file. The reader and writer processes can run on the same
platform or different platforms, and no communication between the processes or file locking is
needed.

To use SWMR, you must be familiar with the HDF5 SWMR programming model. For more
information, see the HDF5 SWMR Documentation on The HDF Group website.

Note MATLAB releases earlier than R2021b might not be able to read HDF5 files or objects created
using R2021b or later releases due to the file format changes in HDF5 version 1.10. HDF5 files
created with SWMR access are not compatible with versions of HDF5 prior to 1.10. Because the
HDF5 library is always backward compatible, MATLAB R2021b and later releases can read and
modify HDF?5 files or objects created using any MATLAB release.

Requirements and Limitations

* An HDF?5 file with SWMR access must be located on a file system that complies with the Portable
Operating System Interface (POSIX) write() semantics, and the writer and reader processes must
follow the SWMR programming model.

*+ SWMR is not supported on remote file locations.
* You must follow the SWMR implementation scope:

1 The writer process is allowed to modify raw data of existing datasets only by:
* Appending data along an unlimited dimension

* Modifying existing data
2 The writer process is not allowed to:

* Add new objects to or delete objects from the file. Such objects include groups, datasets,
links, committed datatypes, and attributes.

* Modify or append to any data items containing variable-size data types (including string
data types).

3 File space recycling is not allowed. The size of a file modified by a SWMR writer may be
greater than if a non-SWMR writer had modified the file.

For more information on SWMR requirements and limitations, see the HDF5 SWMR User's Guide on
The HDF Group website.

Enable SWMR Access for HDF5 File

Follow these general steps in MATLAB to enable SWMR access in on HDF5 file:

7-47

https://portal.hdfgroup.org/display/HDF5/Single+Writer+Multiple+Reader++-+SWMR
https://portal.hdfgroup.org/display/HDF5/Single+Writer+Multiple+Reader++-+SWMR

7 Scientific Data

1 Create the file with the latest file format by specifying the lower and upper bounds of the library
version as 'H5F LIBVER LATEST' in the call to the H5P.set libver bounds function.

H5P.set libver bounds(faplID, 'H5F LIBVER LATEST', 'H5F LIBVER LATEST');
2 Enable SWMR write access for the HDF5 file and flush the dataset after each write operation.

a Specify the flag 'H5F ACC_SWMR WRITE' in the call to the H5F . open function. For
example, open the file with SWMR write access using the default property list settings.

fileID = H5F.open(myFile, 'H5F ACC_RDWR|H5F _ACC_SWMR WRITE','H5P DEFAULT');

Alternatively, you can enable SWMR write access using the H5F.start _swmr write
function.

b Flush the dataset after each write operation using H5D. flush.
3 Enable SWMR read access for the HDF5 file and refresh the dataset before each read operation.

a Open the file for SWMR read access by specifying the flag "H5F _ACC_SWMR READ' in the
call to the H5F . open function. For example, open the file with SWMR read access using the
default property list settings.

fileID = H5F.open(myFile, "H5F ACC RDONLY|H5F ACC SWMR READ', 'H5P_DEFAULT');
b Refresh the dataset before each read operation using H5D. refresh.

Write to HDF5 File While Two Processes Read

Use SWMR to write surface data to an HDF5 file, while one reader process records peak data in a
text file and another plots the surface data over time. This example uses data generated from the
MATLAB peaks function.

This example defines three functions, writeData, readPlot3D, and readLogger, which can be run
concurrently in an SWMR-enabled environment. You must run writeData before readPlot3D and
readLogger to create the HDF5 file if it does not exist.

Create a writer function named writeData that writes a 2-D array of data to an HDF5 file.

When you create the file, set the lower and upper library version bounds to 'H5F LIBVER LATEST'
in the call to the H5P.set_libver bounds function. Then, enable SWMR write access to the file by
specifying the flag '"H5F ACC_SWMR WRITE' in the call to the H5F. open function.

Finally, flush the dataset after each write operation using H5D. flush.

function writeData(dataFile)
% Create HDF5 file if does not already exist, and initialize dataset.
if ~exist(dataFile, 'file")
% Create file access property list, set library version flags, and create the file.
faplID = H5P.create('H5P FILE ACCESS');
H5P.set libver bounds(faplID, 'H5F LIBVER LATEST','H5F LIBVER LATEST');
fileID = H5F.create(dataFile, 'H5F ACC TRUNC', 'H5P DEFAULT',faplID);

% Create and write dataset.

datatypeID = H5T.copy('H5T NATIVE DOUBLE');

dataspaceID = H5S.create simple(2,[25 25],[]);

datasetID = H5D.create(filelD, '/peaks',datatypelD,dataspacelD, 'H5P DEFAULT');
H5D.write(datasetID, '"H5ML DEFAULT', 'H5S ALL','H5S ALL', "H5P DEFAULT',NaN(25));

7-48

Read and Write Data Concurrently Using Single-Writer/Multiple-Reader (SWMR)

end

% Close open resources.
H5D.close(datasetID);
H5S.close(dataspacelD);
H5T.close(datatypelD);
H5F.close(filelD);

end

% Open HDF5 file with support for SWMR write access and open dataset.
fileID = H5F.open(dataFile, '"H5F ACC RDWR|H5F ACC SWMR WRITE', '"H5P DEFAULT');
datasetID = H5D.open(filelD, '/peaks');

% Loop through writing Z data to file.

for t =0 : 0.05 : 15
Z = exp(-0.15*%t) * sin(10*t) * abs(peaks(25));
H5D.write(datasetID, 'H5ML DEFAULT', 'H5S ALL','H5S ALL', 'H5P DEFAULT',Z);

% Flush data in the dataset after writing.
H5D. flush(datasetID);
pause(0.05);

end

% Close open resources.
H5D.close(datasetID);
H5F.close(filelD);

Create a reader function named readPlot3D that plots data stored in the /peaks dataset of the
input HDF5 file.

Enable SWMR read access by specifying the flag 'H5F ACC_SWMR READ' in the call to the
H5F . open function. Refresh the data in the dataset before each subsequent read.

function readPlot3D(dataFile)

% Open HDF5 file with for SWMR read access and open dataset.
h5FileID = H5F.open(dataFile, 'H5F ACC RDONLY|H5F ACC SWMR READ', 'H5P DEFAULT');
datasetID = H5D.open(h5FilelD, '/peaks');

% Loop through reading Z data from file and 3D plotting it.
hSurf = [];
for t =0 :0.05 : 15
% Refresh dataset before reading.
H5D. refresh(datasetID);
Z = H5D.read(datasetID, 'H5ML DEFAULT', 'H5S ALL','H5S ALL','H5P DEFAULT");
if isempty(hSurf)
% Create surface plot if not present.
hSurf = surf(zZ);
zlim([-8 81);
caxis([-5 51);
else
% Update surface plot Z data otherwise.
hSurf.ZData = Z;
end
pause(0.05);
end

% Close open resources

7-49

7 Scientific Data

H5D.close(datasetID);
H5F.close(h5FilelD);
end

The readP1lot3D function updates the plot with each iteration, resulting in a surface plot similar to
the following one.

25

10 10
0 o0

Create a second reader function named readLogger that reads the data in the /peaks dataset and
logs the data taken at one sampling point.

Enable SWMR read access by specifying the flag 'H5F ACC_SWMR READ' in the call to the
H5F . open function. Refresh the data in the dataset before each subsequent read.

function readlLogger(dataFile)
% Open HDF5 file with SWMR read access and open dataset.
h5FileID = H5F.open(dataFile, 'H5F ACC RDONLY|H5F ACC SWMR READ', 'H5P DEFAULT');
datasetID = H5D.open(h5FilelD, '/peaks');

% Open log file for saving records.
recordFileID = fopen('logs.txt','w');
fprintf(recordFilelD, 't,Zpeak\n');

% Loop through reading Z data from the file and recording central value.
for t=0: 0.05 : 15
% Refresh dataset before reading.
H5D.refresh(datasetID);
Z = H5D.read(datasetID, 'HS5ML DEFAULT', 'H5S ALL','H5S ALL"', 'H5P DEFAULT');

7-50

Read and Write Data Concurrently Using Single-Writer/Multiple-Reader (SWMR)

idx = round(size(Z,1)/2);
fprintf(recordFilelD, '%.3f,%.3f\n',t,Z(idx, idx));
pause(0.05);

end

% Close open resources.

H5D.close(datasetID);

H5F.close(h5FilelID);

fclose(recordFilelD);
end

The readLogger function writes data samples to a text file named logs . txt. You can plot the data
in logs. txt to obtain the following figure.

See Also

“Work with HDF5 Virtual Datasets (VDS)” on page 7-52 | Property (H5P) | Dataset (H5D) | File
(H5F)

7-51

7 Scientific Data

Work with HDF5 Virtual Datasets (VDS)

Overview

The HDF5 Virtual Dataset (VDS) feature allows you to access data from a collection of HDF5 files as a
single, unified dataset, without modifying how the data is stored in the original files. Virtual datasets
can have unlimited dimensions and map to source datasets with unlimited dimensions. This mapping
allows a Virtual Dataset to grow over time, as its underlying source datasets change in size.

The VDS feature was introduced in the HDF5 library version 1.10. To use VDS, you must be familiar
with the HDF5 VDS programming model. For more information, see the HDF5 Virtual Dataset
documentation on The HDF Group website.

Note MATLAB versions earlier than R2021b cannot read HDF5 Virtual Datasets.

Create a Virtual Dataset

Follow these general steps for building a Virtual Dataset:

1 Create datasets that comprise the VDS (the source datasets) (optional).
2 Create the VDS.

Define a datatype.
Define a dataspace.
Define the dataset creation property list.

Q N T 9

Map elements from the source datasets to the elements of the VDS.
i Iterate over the source datasets.

A Select elements in the source dataset (source selection).
B Select elements in the Virtual Dataset (destination selection).

C Map destination selections to source selections using a dataset creation property
list call.

ii End the iteration.
e Call H5D. create using the defined properties.
3 Access the VDS as a regular HDF5 dataset.
4 Close the VDS when finished.

Note The HDF5 C library uses C-style ordering for multidimensional arrays, whereas MATLAB uses
FORTRAN-style ordering. For more information, see “Report Data Set Dimensions” on page 7-37.

Work with Remotely Stored Virtual Datasets
You can use the MATLAB low-level HDF5 functions to create and read Virtual Datasets stored in

remote locations, such as Amazon S3™ and Windows Azure® Blob Service. Use the high-level HDF5
functions to read and access information on Virtual Datasets stored in remote locations.

7-52

https://portal.hdfgroup.org/display/HDF5/Virtual+Dataset++-+VDS

Work with HDF5 Virtual Datasets (VDS)

When accessing a Virtual Dataset stored in a remote location, you must specify the full path using a
uniform resource locator (URL). For example, display the metadata of an HDF5 file stored on Amazon
S3.

h5disp('s3://bucketname/path to file/my VDSdata.h5');

For more information on setting up MATLAB to access your online storage service, see “Work with
Remote Data” on page 13-93.

Create Virtual Dataset from Datasets of Varying Sizes

Create an HDF5 Virtual Dataset from datasets of varying sizes and with mismatching group and
dataset names. The elevation data in the three datasets is generated from the MATLAB peaks
function.

Use three datasets containing elevation data to reconstruct a larger, more complete topographical
map. The three datasets are disjoint, meaning spatial data is missing along one or more of their
shared dimensions, and they vary in shape and size.

Reconstruct the topographical profile with the three disjoint datasets. The sampling points from the
three datasets are overlayed on the topographical profile according to their geospatial coordinates. In
both plots, the x and y axes represent longitudes and latitudes, respectively, with latitudes increasing
in the y-direction.

7-53

7 Scientific Data

11 North-East (NE) 22

West (W)

X OM K MM 3
-l T X X b1 X b
e .t
FN S {x \u.......x A w...frkf.z ® X
7 \\x P S | f// Y
R T S R g s "I 4 i & e A AT A TR
\\ \\. ...\.\... & i ﬁ/..f / .._r
I I \\x \\x..\\x\ PR B | 3
i | ¥ b ..__
¥ ® O X\ x_.___. x| u_m SN S S | EAE _Tn__ E
| { __ [| f { .__
¥ MM ¥ el &l x x xfIx xx_‘\p P
{ 4 : Y \. x\
X x x,_.‘ x / X _M /x,......x x X - » x.. .xﬂ.\xx\f\ d X |u.
¥ \ /| % ._x %ﬂ..k-...ﬂu Y h.n\\\\m:fv,x ¥
/ em--ukl--lu”r 1 _\\J..M\x..- — =
x W/ ox Mmoo w) ox (% e 1 | Tl ® 3
.__\ .._..___ W N _ ", Ly x.xx
* * f K % oW 4| MJ\ ® X /Y NH .___n ®x X /u..
fEF |
| / Y | £
¥ _F (%[x x |x L, x x.x///x_ r,,..x..:xm »
[] Fél ™ 5,
¥ poolalo o ox Jaxf x| o e /M R XD
-" 1 i ..1.. " . .
AW {] AN, =
x A x el xS x) x (f [x ,,,/ R
— 7 =) o |
" X e
x x._..xx Nx e x.\\\& x % ..,x_xfu/x x.._J_A,,,m N
¥ O N I”u-nwph\\x/; e W /fz/x.r.ﬂ ﬂ ._..N./ ® D
et . a..,.,_\.\uw.l ..-H..Hrhruuu., e / .__
¥ O®H M O®Ox w x.ﬁ\\\.\#... .M...Hx;._f.ru@au.nuuuxx x mx 3
\\. \x # e|1|\.......
¥ oM o M £RL T s R x(% X % >
._ __ | A .Fr... W
F 1 RN
¥ o® M o= % _"__.x“. (% Lx x = x)) .fﬂ/_/ﬂ 0 OK 3
Yy I8 |
X ox X X /xfxxx %% m) XH X x o
. T : iy
L N e el Y
XX XK M XMW K A RNTX X X W ® K3
I_._rr /(r..r.r o . - |..-.... ..\.LN
X X X X X Z J.N.;JMM E Mum«x\\r\\ﬁ\ XX XK 2
J s
XM OOX M M M X .r.m..rrrxlu.x.ulxi LA A S T
¥ X X X X X X X X X X X X X X X 3z
- .
S 2
™ ~

Work with HDF5 Virtual Datasets (VDS)

Display information on the three datasets in the files data W.h5, data NE.h5, data SE.h5. The
h5disp function displays information about the datasets, including their names, datatypes,
dimensions, and groups to which they belong.

h5disp("data W.h5")

HDF5 data W.h5
Group '/'
Group '/data'
Dataset 'elevation'

Size: 20x10
MaxSize: 20x10
Datatype: H5T IEEE F64LE (double)
ChunkSize: []
Filters: none
FillValue: 0.000000

h5disp("data NE.h5")

HDF5 data NE.h5
Group '/'
Dataset 'z
Size: 11x12
MaxSize: 11x12
Datatype: H5T IEEE F64LE (double)
ChunkSize: []
Filters: none
FillValue: 0.000000

h5disp("data SE.h5")

HDF5 data SE.h5
Group '/'
Dataset 'Elev'

Size: 9x13
MaxSize: 9x13
Datatype: H5T IEEE F64LE (double)
ChunkSize: []
Filters: none
FillValue: 0.000000

Create a dataspace and creation property list for the Virtual Dataset. Then, map each dataset to the
virtual dataspace using C-style dimensions ordering and zero-based indexing.

For instance, the lower-left corner of the data block for the North-East region corresponds to
MATLAB indices [10 11]. To convert these indices to C-style ordered, zero-based indices, flip the
indices [10 11] and subtract the value 1. The resulting start indices are [10 9].

% Define the fill value and specify the file access property list identifier.
fillValue = NaN;
faplID = H5P.create('H5P FILE ACCESS');

% Create the file for the Virtual Dataset.
vdsFileID = H5F.create('data VDS.h5', 'H5F ACC TRUNC', 'H5P DEFAULT',faplID);

% Define the datatype and dataspace.

datatypeID = H5T.copy('H5T NATIVE DOUBLE');
vdsDataspaceID = H5S.create simple(2,[24 20],[1]);

7-55

7 Scientific Data

7-56

% Initialize Virtual Dataset creation property list with virtual layout and fill value.
vdsDcplID = H5P.create('H5P DATASET CREATE');

H5P.set layout(vdsDcplID, 'H5D VIRTUAL');

H5P.set fill value(vdsDcplID,datatypelID,fillValue);

% Perform full dataset mapping for three individual source datasets.

% Map '/data/elevation' from data W.h5 to the Virtual Dataset.

srcDataspaceID W = H5S.create simple(2,[10 20]1,[1);

H5S.select hyperslab(vdsDataspaceID, '"H5S SELECT SET',[0 O1,[1,[1,[10 20]);

H5P.set virtual(vdsDcplID, vdsDataspacelD, 'data W.h5','/data/elevation',srcDataspaceID W);

% Map '/z' from data NE.h5 to the Virtual Dataset.

srcDataspaceID NE = H5S.create simple(2,[12 11],[1);

H5S.select hyperslab(vdsDataspacelID, 'H5S SELECT SET',[10 91,[1,[1,[12 11]);
H5P.set virtual(vdsDcplID,vdsDataspacelD, 'data NE.h5"',"'/z"',srcDataspaceID NE);

% Map '/Elev' from data SE.h5 to the Virtual Dataset.

srcDataspaceID SE = H5S.create simple(2,[13 91,[1);

H5S.select hyperslab(vdsDataspaceID, 'H5S SELECT SET',[11 O1,[1,[1,[13 91);
H5P.set virtual(vdsDcplID,vdsDataspacelD, 'data SE.h5','/Elev',srcDataspaceID SE);

Create the HDF5 file and the Virtual Dataset /elevation, and then close all open resources.

% Call H5D.create using the defined properties.
vdsDatasetID = H5D.create(vdsFilelD, '/elevation',datatypeID,vdsDataspacelID, 'H5P DEFAULT',vdsDcpl.

% Close open resources.
H5D.close(vdsDatasetID);
H5S.close(srcDataspacelID SE);
H5S.close(srcDataspaceID NE);
H5S.close(srcDataspaceID W);
H5P.close(vdsDcplID);
H5S.close(vdsDataspacelD);
H5T.close(datatypelD);
H5F.close(vdsFilelID);
H5P.close(faplID);

—~ e~~~ o~~~ —~

Read the Virtual Dataset and plot it.

The resulting plot is similar to the original plot of the topographical map, except for the areas where
data is missing due to the disjoint datasets.

% Read elevations using the low-level interface.

vdsFileID = H5F.open('data VDS.h5', 'H5F ACC RDONLY"', 'H5P DEFAULT');

vdsDatasetID = H5D.open(vdsFilelD, '/elevation', 'H5P DEFAULT');

elevation = H5D.read(vdsDatasetID, 'H5ML DEFAULT', 'H5S ALL"', 'H5S ALL','H5P DEFAULT");
H5D.close(vdsDatasetID);

H5F.close(vdsFilelID);

contourf(elevation,10);

Work with HDF5 Virtual Datasets (VDS)

Display the contents of the Virtual Dataset file.
h5disp('data VDS.h5")

HDF5 data VDS.h5
Group '/'

Dataset 'elevation'
Size: 20x24
MaxSize: 20x24
Datatype:
ChunkSize: []
Filters: none
FillValue: NaN

H5T IEEE F64LE (double)

14 16

8 20 22 24

You can perform I/O operations on the Virtual Dataset. For instance, read a hyperslab of data from
the /elevation dataset using the h5read function in the high-level interface.

0.0765
0.1901
4.8474
3.9113

0.0059
0.4741
3.3676
2.5722

sample = h5read('data VDS.h5','/elevation',[1 11,[5 61,[4 4])
sample = 5x6

0.0007 0.0102 0.0823 0.3265

0.0028 0.0331 0.3023 2.9849

0.1661 3.3570 2.5482 1.3171

0.1915 3.9606 1.1585 0.9892

0.0151 0.2633 1.0373 2.5380

0.9625

0.2401

7-57

7 Scientific Data

See Also
“Read and Write Data Concurrently Using Single-Writer/Multiple-Reader (SWMR)” on page 7-47 |
Property (H5P) | Dataspace (H5S)

7-58

Read and Write HDF5 Datasets Using Dynamically Loaded Filters

Read and Write HDF5 Datasets Using Dynamically Loaded
Filters

The HDF?5 library and file format enables using filters on data chunks before they are written to or
after they are read from disk. Compression filters, for example, can substantially reduce the size of
the data to be stored on disk and improve the overall performance of reading from and writing to an
HDF5 dataset.

The HDF?5 library includes a small set of internal filters, and MATLAB supports most of them. While
these filters work relatively well, they may not always provide an optimal performance improvement.
For this reason, the HDF5 library and MATLAB support dynamically loaded filters, a mechanism that
enables loading third-party filters at run time and adding them to the filter pipeline. To use
dynamically-loaded filters, install filter plugins for reading datasets that were created using third-
party filters, or for creating and writing datasets using third-party filters.

Both MATLAB high- and low-level interfaces support workflows that involve dynamically loaded
filters. You can read HDF5 datasets encoded using third-party filters through typical workflows as
long as the necessary filter plugins are available on your system.

* High-level interface — h5create supports two name-value arguments for specifying the filter
identifier and parameters when creating datasets.

* Low-level interface — The low-level interface enables more advanced filter workflows, including
H5P.set filter for adding filters to the filter pipeline and H5Z. filter avail for checking if
a filter is available. To take full advantage of the low-level interface, you must be familiar with the
HDEF5 C API. For more information, see the documentation on the HDF5 Group website about
Dynamically Loaded Filters.

Install Filter Plugins

MATLAB supports three internal HDF5 filters: Deflate (GZIP), Shuffle, and Fletcher32. To read or
write datasets using third-party filters, install and configure filter plugins.

1 Install the relevant filter plugins:

* On Windows and Mac — Download and install the plugin binaries for your operating system
from The HDF Group.

Install the bundle of filter plugins for the version of HDF5 shipped with your MATLAB release.
To query the version of HDF5 in your MATLAB release, use H5.get libversion.

* On Linux — Get the filter plugin source code and build it against the version of HDF5 that is
shipped with MATLAB. To obtain the filter plugin source code, see The HDF Group - Filters.
Alternatively, you can build HDF5 from source using the instructions and the export map file
from Build HDF5 Filter Plugins on MATLAB Answers™, and then build the filter plugin
against your built HDF5 library.

2 Setthe HDF5 PLUGIN PATH environment variable to point to the local installation of the plugins:
* On Windows — Set the environment variable using System Properties > Advanced >
Environment Variables.
* On Linux and Mac — Set the environment variable from the terminal before starting MATLAB.
3 Restart MATLAB.

7-59

https://portal.hdfgroup.org/display/HDF5/HDF5+Dynamically+Loaded+Filters
https://www.hdfgroup.org/downloads/hdf5/
https://portal.hdfgroup.org/display/support/Filters
https://www.mathworks.com/matlabcentral/answers/880033-build-hdf5-filter-plugins-on-linux-using-matlab-hdf5-shared-library-or-gnu-export-map

7 Scientific Data

7-60

Read Datasets Compressed with Third-Party Filters

To read an HDF5 dataset compressed with a third-party filter, install the filter plugin on your system
and set the environment variable.

To get information about filters associated with a dataset, use the h5disp function. For example, get
the filter information for the myFile.h5 dataset. The Filters field indicates that the filter is
registered with The HDF Group. If the required filter plugin is not installed, MATLAB will throw an
error indicating that the filter is not available.

h5disp("myFile.h5","/SomeDataset")

HDF5 myFile.h5
Dataset 'SomeDataset’
Size: 250x250x181
MaxSize: 250x250xInf
Datatype: H5T IEEE F64LE (double)
ChunkSize: 250x250x3
Filters: unrecognized filter (H5Z-ZFP-1.0.1 (ZFP-0.5.5) github.com/LLNL/H5Z-ZFP)
FillValue: 0.000000

Note unrecognized filter indicates that the filter is not one of the HDF5 internal filters (e.g., Deflate);
it does not indicate that the filter is not available on your system.

Once the necessary filter plugins are installed and configured, you can use your typical workflows to
read the HDF5 dataset. For more information about reading HDF5 data, see “Import HDF5 Files” on
page 7-28.

Write Datasets Compressed with Third-Party Filters

You can create and write an HDF5 dataset using either the high-level interface (such as h5create
and h5write) or low-level interface (such as H5D.create and H5D.write). To write a dataset with a
third-party filter, first identify the filter ID and parameters from The HDF Group - Filters page.

For example, create an HDF5 dataset for a time series of 2-D arrays that grows with time. Use data
chunking to enable an unlimited third dimension, and use a ZFP filter to compress the data chunks,
as shown in this illustration.

AN

myData.h5
C—— [dataset
Chunking +
ZFP Filter

UNLIMITED

250 250

1 [nstall ZFP Filter Plugin

First, check if the ZFP filter is available on your system.

https://portal.hdfgroup.org/display/support/Filters

Read and Write HDF5 Datasets Using Dynamically Loaded Filters

H5Z.filter avail(32013)

ans =
0

If the function returns 1, the plugin is installed and available on your system. If it returns 0,
install the ZFP filter plugin.

Create HDF5 Dataset

When you create an HDF5 dataset using filters, its list of filters is stored as a dataset property.
You can define a filter using either the high-level or the low-level interface. To use filters, you
must enable data chunking because filters are applied per chunk.

Create an HDF5 dataset using the high-level h5create function. Specify the chunk size using
the ChunkSize name-value argument. Specify the filter using the CustomFilterID and
CustomFilterParameters name-value arguments.

N = 250;

filterID = 32013;

filterParams = [3 3.52 00 0 0 0 0];
filename = "myFile.h5";

dataset = "/dataset";

ID of the ZFP filter
Parameters for the ZFP filter

%
%

% Delete file if it exists to restart with a clean file
if exist(filename,"file")

delete(filename);
end

% Create dataset with unlimited (infinite) dimension, chunking, and
% with ZFP compression.

h5create(filename,dataset, [N,N,Inf], "ChunkSize", [N,N,4],
"CustomFilterID", filterID, "CustomFilterParameters",filterParams);

Alternatively, if you want more control over the filter pipeline, such as adding or updating filters,
you can use the low-level interface. The low-level interface has functions for adding multiple
filters to the filter pipeline (H5P.set filter), for getting filters or information about filters
(H5P.get filter, H5Z.get filter info, H5P.get filter by id), for updating filters
(H5P.modify filter), and for removing filters from the pipeline (H5P. remove filter).

For example, create an HDF5 dataset using the low-level interface. Specify the chunk size and
the filter using H5P.set chunk and H5P.set filter. You can exclude a filter from any chunks
in which there was a filter failure during writing by using the H5Z FLAG_OPTIONAL option. With
this option, the filter does not participate in the pipeline during any subsequent reading of the
chunk. To error at the first chunk in which there is a filter failure, use the H5Z_ FLAG _MANDATORY
option. Subsequent data is not written.

N = 250;

filterID = 32013;

filterParams = [3 3.52 0000 0 0];
filename = "myFile.h5";

dataset = "/dataset";

ID of the ZFP filter
Parameters for the ZFP filter

)
“©
)

“©

% Delete file if it exists to restart with a clean file
if exist(filename,"file")

delete(filename);
end

7-61

7 Scientific Data

% Check that ZFP filter is available
assert(H5Z.filter avail(filterID),"ZFP filter (ID %d) unavailable.",filterID);

% Create dataspace with unlimited (infinite) dimension
UNLIMITED = H5ML.get constant value("H5S UNLIMITED");
dspaceID = H5S.create simple(3,fliplr([N,N,0]1),fliplr([N,N,UNLIMITED]));

% Build dataset creation property list with chunking and ZFP filter
dcplID = H5P.create("H5P DATASET CREATE");

H5P.set chunk(dcplID,fliplr([N,N,41));

H5P.set filter(dcplID,filterID,"H5Z FLAG MANDATORY",filterParams);

% Create file and dataset
fileID = H5F.create(filename, "H5F ACC TRUNC","H5P DEFAULT","H5P DEFAULT");
dsetID = H5D.create(fileID,dataset,"H5T NATIVE DOUBLE",dspaceID,[],dcplID,"H5P DEFAULT");

% Close open resources
H5D.close(dsetID);
H5F.close(filelD);
H5P.close(dcplID);
H5S.close(dspacelD);

3 Write HDF5 Dataset

Write the dataset using the typical workflow. For example, this code writes time-varying data
based on the MATLAB peaks function. The for loop creates a situation similar to saving a data
stream, one 2-D array at a time while time flows.

* Using the high-level interface:

data® = peaks(N);
tic;
for t = 0:180
data = data0® * cosd(t);
h5write(filename,dataset,data,[1,1,t+1],[N,N,1]);
end
to

Elapsed time is 1.029668 seconds.
* Using the low-level interface:

data® = peaks(N);

tic;
fileID = H5F.open(filename, "H5F ACC _RDWR","H5P DEFAULT");
dsetID = H5D.open(fileID,dataset);

for t = 0:180
data = data0® * cosd(t);
H5D.set extent(dsetID,fliplr([N,N,t+1]));
dspaceID = H5D.get space(dsetID);
H5S.select hyperslab(dspaceID,"H5S SELECT SET",fliplr([0,0,t]1),[],[]1,fliplr([N,N,1]1));
memspaceID = H5S.create simple(3,fliplr([N,N,11),[1);
H5D.write(dsetID, "H5ML DEFAULT",memspacelID,dspacelD, "H5P DEFAULT",data);
end
H5S.close(dspacelD);
H5D.close(dsetID);
H5F.close(fileID);
toc

7-62

Read and Write HDF5 Datasets Using Dynamically Loaded Filters

Elapsed time is 0.598005 seconds.

The low-level workflow is more efficient because it requires opening and closing the file and the
dataset only once, before and after the loop, respectively. In the high-level workflow, these
operations are performed each time h5write is called. The low-level interface also allows setting
the chunk cache size, which can improve the performance.

4 Read and Display HDF5 Dataset

You can read HDF5 datasets compressed using dynamically loaded filters like any other dataset,
as long as relevant filter plugins are installed and the environment variable HDF5 PLUGIN PATH
is set.

data = h5read(filename,dataset, [50,25,1]1,[3,5,2],[50,40,45])

data(:,:,1) =
0.0145 0.1045 -3.0375 -5.4901 -0.7706
-0.2130 -0.6894 3.7574 0.1285 2.3196
-0.2966 -2.3229 0.5124 0.4879 2.4735

data(:,:,2)
0.0102 0.0739 -2.1478 -3.8821 -0.5449
-0.1506 -0.4875 2.6569 0.0909 1.6402
-0.2097 -1.6425 0.3623 0.3450 1.7490

See Also
h5create | h5disp | h5read | h5write

7-63

7 Scientific Data

Map HDF4 to MATLAB Syntax

7-64

Each HDF4 API includes many individual routines that you use to read data from files, write data to
files, and perform other related functions. For example, the HDF4 Scientific Data (SD) API includes
separate C routines to open (SDopen), close (SDend), and read data (SDreaddata). For the SD API
and the HDF-EOS GD and SW APIs, MATLAB provides functions that map to individual C routines in
the HDF4 library. These functions are implemented in the matlab.io.hdf4.sd,
matlab.io.hdfeos.gd, and matlab.io.hdfeos.sw packages. For example, the SD API includes
the C routine SDendaccess to close an HDF4 data set:

status = SDendaccess(sds id); /* C code */

To call this routine from MATLAB, use the MATLAB function, matlab.io.hdf4.sd.endAccess. The
syntax is similar:

sd.endAccess(sdsID)

For the remaining supported HDF4 APIs, MATLAB provides a single function that serves as a gateway
to all the routines in the particular HDF4 API. For example, the HDF Annotations (AN) API includes
the C routine ANend to terminate access to an AN interface:

status = ANend(an_id); /* C code */

To call this routine from MATLAB, use the MATLAB function associated with the AN API, hdfan. You
must specify the name of the routine, minus the API acronym, as the first argument and pass any
other required arguments to the routine in the order they are expected. For example,

status = hdfan('end',an_id);

Some HDF4 API routines use output arguments to return data. Because MATLAB does not support
output arguments, you must specify these arguments as return values.

For example, the ANget tagref routine returns the tag and reference number of an annotation in
two output arguments, ann_tag and ann_ref. Here is the C code:

status = ANget tagref(an_id,index,annot type,ann_tag,ann_ref);
To call this routine from MATLAB, change the output arguments into return values:
[tag, ref,status] = hdfan('get tagref',AN id,index,annot_type);

Specify the return values in the same order as they appear as output arguments. The function status
return value is always specified as the last return value.

Import HDF4 Files Using Low-Level Functions

Import HDF4 Files Using Low-Level Functions

This example shows how to read data from a Scientific Data Set in an HDF4 file, using the functions
in the matlat.io.hdf4.sd package. In HDF4 terminology, the numeric arrays stored in HDF4 files
are called data sets.

Add Package to Import List
Add the matlab.io.hdf4.* path to the import list.
import matlab.io.hdf4.*

Subsequent calls to functions in the matlat.io.hdf4.sd package need only be prefixed with sd,
rather than the entire package path.

Open HDF4 File

Open the example HDF4 file, sd. hdf, and specify read access, using the
matlab.io.hdf4.sd.start function. This function corresponds to the SD API routine, SDstart.

sdID = sd.start('sd.hdf', 'read');
sd.start returns an HDF4 SD file identifier, sdID.
Get Information About HDF4 File

Get the number of data sets and global attributes in the file, using the
matlab.io.hdf4.sd.fileInfo function. This function corresponds to the SD API routine,
SDfileinfo.

[ndatasets,ngatts] = sd.fileInfo(sdID)

ndatasets = 4

ngatts =1

The file, sd. hdf, contains four data sets and one global attribute,

Get Attributes from HDF4 File

Get the contents of the first global attribute. HDF4 uses zero-based indexing, so an index value of 0
specifies the first index.

HDF4 files can optionally include information, called attributes, that describes the data that the file
contains. Attributes associated with an entire HDF4 file are global attributes. Attributes associated
with a data set are local attributes.

attr = sd.readAttr(sdID,0)

attr =
'02-Sep-2010 11:13:16'

Select Data Sets to Import

Determine the index number of the data set named temperature. Then, get the identifier of that
data set.

7-65

7 Scientific Data

7-66

idx = sd.nameToIndex(sdID, 'temperature');
sdsID = sd.select(sdID,idx);

sd.select returns an HDF4 SD data set identifier, sdsID.
Get Information About Data Set

Get information about the data set identified by sdsID using the matlab.io.hdf4.sd.getInfo
function. This function corresponds to the SD API routine, SDgetinfo.

[name,dims,datatype,nattrs] = sd.getInfo(sdsID)

name =
"temperature’

dims = Ix2
20 10

datatype =

"double’

nattrs = 11

sd.getInfo returns information about the name, size, data type, and number of attributes of the
data set.

Read Entire Data Set

Read the entire contents of the data set specified by the data set identifier, sdsID.
data = sd.readData(sdsID);
Read Portion of Data Set

Read a 2-by-4 portion of the data set, starting from the first column in the second row. Use the
matlab.io.hdf4.sd.readData function, which corresponds to the SD API routine, SDreaddata.
The start input is a vector of index values specifying the location in the data set where you want to
start reading data. The count input is a vector specifying the number of elements to read along each
data set dimension.

start = [0 1];

count = [2 4];

data2 = sd.readData(sdsID,start, count)
data2 = 2x4

21 41 61 81
22 42 62 82
Close HDF4 Data Set

Close access to the data set, using the matlab.io.hdf4.sd.endAccess function. This function
corresponds to the SD API routine, SDendaccess. You must close access to all the data sets in and
HDF4 file before closing the file.

sd.endAccess(sdsID)

Import HDF4 Files Using Low-Level Functions

Close HDF4 File

Close the HDF4 file using the matlab.io.hdf4.sd.close function. This function corresponds to
the SD API routine, SDend.

sd.close(sdID)

See Also
sd.getInfo | sd.readData | sd.endAccess | sd.close | sd.start | sd.fileInfo

More About
. “Map HDF4 to MATLAB Syntax” on page 7-64

7-67

7 Scientific Data

About HDF4 and HDF-EOS

7-68

Hierarchical Data Format (HDF4) is a general-purpose, machine-independent standard for storing
scientific data in files, developed by the National Center for Supercomputing Applications (NCSA).
For more information about these file formats, read the HDF documentation at the HDF Web site
(www. hdfgroup.org).

HDF-EOS is an extension of HDF4 that was developed by the National Aeronautics and Space
Administration (NASA) for storage of data returned from the Earth Observing System (EOS). For
more information about this extension to HDF4, see the HDF-EOS documentation at the NASA Web
site (www . hdfeos.org).

HDF4 Application Programming Interfaces (APIs) are libraries of C routines. To import or export
data, you must use the functions in the HDF4 API associated with the particular HDF4 data type you
are working with. Each API has a particular programming model, that is, a prescribed way to use the
routines to write data sets to the file. MATLAB functions allow you to access specific HDF4 APIs.

To use the MATLAB HDF4 functions effectively, you must be familiar with the HDF library. For
detailed information about HDF4 features and routines, refer to the documentation at the HDF Web
site.

https://www.hdfgroup.org
https://www.hdfeos.org

Export to HDF4 Files

Export to HDF4 Files

In this section...
“Write MATLAB Data to HDF4 File” on page 7-69
“Manage HDF4 Identifiers” on page 7-70

Write MATLAB Data to HDF4 File

This example shows how to write MATLAB® arrays to a Scientific Data Set in an HDF4 file.
Add Package to Import List

Add the matlab.io.hdf4.* path to the import list.

import matlab.io.hdf4.*

Prefix subsequent calls to functions in the matlat.io.hdf4. sd package with sd, rather than the
entire package path.

Create HDF4 File

Create a new HDF4 file using the matlab.io.hdf4.sd.start function. This function corresponds
to the SD API routine, SDstart.

sdID = sd.start('mydata.hdf', 'create');
sd.start creates the file and returns a file identifier named sdID.

To open an existing file instead of creating a new one, call sd.start with 'write' access instead of
‘create’.

Create HDF4 Data Set

Create a data set in the file for each MATLAB array you want to export. If you are writing to an
existing data set, you can skip ahead to the next step. In this example, create one data set for the
array of sample data, A, using the matlab.io.hdf4.sd.create function. This function corresponds
to the SD API routine, SDcreate. The ds_type argument is a character vector specifying the
MATLAB data type of the data set.

A=[12345;06728910 ,; 11 12 13 14 15];

ds _name = 'A’';
ds_type = 'double’;
ds _dims = size(A);

sdsID = sd.create(sdID,ds name,ds type,ds dims);
sd.create returns an HDF4 SD data set identifier, sdsID.
Write MATLAB Data to HDF4 File

Write data in A to the data set in the file using the matlab.io.hdf4.sd.writedata function. This
function corresponds to the SD API routine, SDwritedata. The start argument specifies the zero-
based starting index.

7-69

7 Scientific Data

7-70

start = [0 0];
sd.writeData(sdsID,start,A);

sd.writeData queues the write operation. Queued operations execute when you close the HDF4
file.

Write MATLAB Data to Portion of Data Set

Replace the second row of the data set with the vector B. Use a start input value of [1 O] to begin
writing at the second row, first column. start uses zero-based indexing.

B=1[9990909];
start = [1 0];
sd.writeData(sdsID,start,B);

Write Metadata to HDF4 File

Create a global attribute named creation date, with a value that is the current date and time. Use
the matlab.io.hdf4.sd.setAttr function, which corresponds to the SD API routine, SDsetattr.

sd.setAttr(sdID, 'creation date',string(datetime('now')));

sd.Attr creates a file attribute, also called a global attribute, associated with the HDF4 file
identified by sdID.

Associate a predefined attribute, cordsys, to the data set identified by sdsID. Possible values of this
attribute include the text strings 'cartesian', 'polar’, and 'spherical’.

attr _name = 'cordsys';
attr value = 'polar';
sd.setAttr(sdsID,attr name,attr value);

Close HDF4 Data Set

Close access to the data set, using the matlab.io.hdf4.sd.endAccess function. This function
corresponds to the SD API routine, SDendaccess. You must close access to all the data sets in and
HDF4 file before closing the file.

sd.endAccess(sdsID);

Close HDF4 File

Close the HDF4 file using the matlab.io0.hdf4.sd.close function. This function corresponds to
the SD API routine, SDend.

sd.close(sdID);

Closing an HDF4 file executes all the write operations that have been queued using SDwritedata.

Manage HDF4 Identifiers

MATLAB supports utility functions that make it easier to use HDF4 in the MATLAB environment.

* “View All Open HDF4 Identifiers” on page 7-71
* “Close All Open HDF4 Identifiers” on page 7-71

Export to HDF4 Files

View All Open HDF4 Identifiers

Use the gateway function to the MATLAB HDF4 utility API, hdfm1l, and specify the name of the
listinfo routine as an argument to view all the currently open HDF4 identifiers. MATLAB updates
this list whenever HDF identifiers are created or closed. In this example only two identifiers are open.

hdfml('listinfo")

No open RI identifiers

No open GR identifiers

No open grid identifiers

No open grid file identifiers
No open annotation identifiers
No open AN identifiers

Open scientific dataset identifiers:

262144

Open scientific data file identifiers:

393216

No open Vdata identifiers

No open Vgroup identifiers

No open Vfile identifiers

No open point identifiers

No open point file identifiers
No open swath identifiers

No open swath file identifiers
No open access identifiers

No open file identifiers

Close All Open HDF4 Identifiers

Close all the currently open HDF4 identifiers in a single call using the gateway function to the
MATLAB HDF4 utility API, hdfml. Specify the name of the closeall routine as an argument:

hdfml('closeall")

See Also

sd.start | sd.create| sd.writeData | sd.setAttr | sd.close| sd.endAccess | hdfml

More About

. “Map HDF4 to MATLAB Syntax” on page 7-64

7-71

Audio and Video

* “Read and Write Audio Files” on page 8-2

* “Record and Play Audio” on page 8-4

* “Read Video Files” on page 8-8

* “Supported Video and Audio File Formats” on page 8-12

* “Convert Between Image Sequences and Video” on page 8-16

8 Audio and Video

Read and Write Audio Files

8-2

Write data to an audio file, get information about the file, and then read the data back into the
MATLAB workspace.

Write to Audio File

Load sample data from the file, handel.mat

load handel.mat
The workspace now contains a matrix of audio data, y, and a sample rate, Fs.

Use the audiowrite function to write the data to a WAVE file named handel.wav in the current
folder.

audiowrite("handel.wav",y,Fs)
clear y Fs

The audiowrite function also can write to other audio file formats. For a full list of viable formats,
see “Supported File Formats for Import and Export” on page 1-2.

Get Information About Audio File

Use the audioinfo function to get information about the WAVE file, handel.wav.
info = audioinfo("handel.wav")

info =
Filename: 'pwd\handel.wav'
CompressionMethod: 'Uncompressed’
NumChannels: 1
SampleRate: 8192
TotalSamples: 73113
Duration: 8.9249
Title:
Comment:
Artist:

]
]
]
BitsPerSample: 16

= o———

audioinfo returns a 1-by-1 structure array. The SampleRate field indicates the sample rate of the
audio data, in hertz. The Duration field indicates the duration of the file, in seconds.

Read Audio File

Use the audioread function to read the file, handel.wav. The audioread function can support
other file formats. For a full list of viable formats, see “Supported File Formats for Import and Export
on page 1-2.

[y,Fs] = audioread("handel.wav");
Play the audio.
sound(y,Fs)

JL
You also can read files interactively. Select =1 Import Data or double-click the file name in the
Current Folder browser.

Read and Write Audio Files

Plot Audio Data
Create a vector t the same length as y, that represents elapsed time.

0:seconds(1/Fs) :seconds(info.Duration);
t(l:end-1);

t
t

Plot the audio data as a function of time.

plot(t,y)
xlabel('Time")
ylabel('Audio Signal')

Audio Signal

i
=

See Also
audioinfo | audioread | audiowrite

Related Examples
. “Import Images, Audio, and Video Interactively” on page 1-7

8-3

8 Audio and Video

Record and Play Audio

8-4

Record and play audio data for processing in MATLAB from audio input and output devices on your
system. Audio playback and recording in MATLAB Online and MATLAB Web App Server™ are
supported in Google Chrome™.

In this section...

“Record Audio” on page 8-4
“Play Audio” on page 8-6
“Record or Play Audio within a Function” on page 8-6

Record Audio

Record data from an audio input device such as a microphone connected to your system:

Create an audiorecorder object.
2 Call the record or recordblocking method, where:

* record returns immediate control to the calling function or the command prompt even as
recording proceeds. Specify the length of the recording in seconds, or end the recording with
the stop method. Optionally, call the pause and resume methods. The recording is
performed asynchronously.

* recordblocking retains control until the recording is complete. Specify the length of the
recording in seconds. The recording is performed synchronously.

3 Create a numeric array corresponding to the signal data using the getaudiodata method.
The following examples show how to use the recordblocking and record methods.
Record Microphone Input

This example shows how to record microphone input, play back the recording, and store the recorded
audio signal in a numeric array. You must first connect a microphone to your system.

Create an audiorecorder object with default properties named rec0bj for recording audio input.
recObj = audiorecorder
recObj =

audiorecorder with properties:

SampleRate: 8000
BitsPerSample: 8
NumChannels: 1
DevicelID: -1
CurrentSample: 1
TotalSamples: 0
Running: 'o
StartFcn: []
StopFcn: []
TimerFcn: []
TimerPeriod: 0

Record and Play Audio

Tag:
UserData: []
Type: 'audiorecorder'

audiorecorder creates an 8000 Hz, 8-bit, 1-channel audiorecorder object.

Record your voice for 5 seconds.

recDuration = 5;

disp("Begin speaking.")
recordblocking(recObj, recDuration);
disp("End of recording.")

Play the recording.

play(recObj);

Store data in double-precision array y.

y:

getaudiodata(recObj);

Plot the audio samples.

plot(y);

Record Two Channels from Different Sound Cards

To record audio independently from two different sound cards, with a microphone connected to each:

1

Call audiodevinfo to list the available sound cards. For example, this code returns a structure
array containing all input and output audio devices on your system.

info = audiodevinfo;

Identify the sound cards you want to use by name, and note their ID values.

Create two audiorecorder objects. For example, this code creates the audiorecorder object
recorderl for recording a single channel from device 3 at 44.1 kHz and 16 bits per sample. The
code then creates the audiorecorder object recorder?2 for recording a single channel from
device 4 at 48 kHz.

audiorecorder(44100,16,1,3);
audiorecorder(48000,16,1,4);

Record each audio channel separately.

recorderl
recorder2

record(recorderl);

record(recorder2);

pause(5);

The recordings occur simultaneously as the first call to record does not block.

Stop the recordings.

stop(recorderl);
stop(recorder2);

8 Audio and Video

8-6

Specify the Quality of the Recording

By default, an audiorecorder object uses a sample rate of 8000 Hz, a depth of 8 bits (8 bits per
sample), and a single audio channel. With these settings, the required amount of data storage is low.
For higher quality recordings, increase the sample rate or bit depth.

For example, compact disks use a sample rate of 44,100 Hz, a 16-bit depth, and two audio channels.
Create an audiorecorder object to record with those settings.

myRecObj = audiorecorder(44100,16,2);

For more information on the available properties and values, see the audiorecorder reference
page.

Play Audio

After you import or record audio, MATLAB supports several ways to listen to the data:

» For simple playback using a single function call, use sound or soundsc. For example, load a
sample MAT-file that contains signal and sample rate data, and listen to the audio.

load chirp.mat
sound(y,Fs)

» For more flexibility during playback, including the ability to pause, resume, or define callbacks,
use the audioplayer function. Create an audioplayer object, then call methods to play the
audio. For example, listen to the gong sample file.

load gong.mat

gong = audioplayer(y,Fs);

play(gong);

For an additional example, see “Record or Play Audio within a Function” on page 8-6.

If you do not specify the sample rate, sound plays back at 8192 Hz. For any playback, specify smaller
sample rates to play back more slowly, and larger sample rates to play back more quickly.

Note Most sound cards support sample rates between approximately 5000 and 192,000 Hz.
Specifying sample rates outside this range can produce unexpected results.

Record or Play Audio within a Function

If you create an audioplayer or audiorecorder object inside a function, the object exists only for
the duration of the function. For example, create a player function called playFile and a simple
callback function showSeconds.

function playFile(myfile)
load(myfile)

obj = audioplayer(y,Fs);
obj.TimerFcn = 'showSeconds';
obj.TimerPeriod = 1;

play(obj);

Record and Play Audio

end
function showSeconds

disp("tick")
end

Call playFile from the command prompt to play the file handel.mat.
playFile("handel.mat")

At the recorded sample rate of 8192 samples per second, playing the 73,113 samples in the file takes
approximately 8.9 seconds. However, the playFile function typically ends before playback
completes, and clears the audioplayer object obj.

For complete playback or recording, consider these options:

* Use playblocking or recordblocking instead of play or record. The blocking methods
retain control until playing or recording completes. If you block control, you cannot issue any
other commands or methods (such as pause or resume) during the playback or recording.

* Create an output argument for your function that generates an object in the base workspace. For
example, modify the playFile function to include an output argument.

function obj = playFile(myfile)

Call the function.

h = playFile("handel.mat");

Because h exists in the base workspace, you can pause playback from the command prompt.
pause(h)

See Also
audioplayer | sound | soundsc | audiorecorder

More About
. “Read and Write Audio Files” on page 8-2

8 Audio and Video

Read Video Files

8-8

Read frames from a video starting at a specific time or frame index, read frames within a specified
interval, or read all the frames in the video.

Read Frames Beginning at Specified Time or Frame Index

Read part of a video file starting 0.5 second from the beginning of the file. Then, read the video
starting from frame index 100 to the end of the video file.

Construct a VideoReader object associated with the sample file ' xylophone.mp4'.
vidObj = VideoReader('xylophone.mp4');

Specify that reading should begin 0.5 second from the beginning of the file by setting the
CurrentTime property.

vidObj.CurrentTime = 0.5;

Read video frames until the end of the file is reached by using the readF rame method.

while hasFrame(vidObj)
vidFrame = readFrame(vidObj);
imshow(vidFrame)
pause(1l/vidObj.FrameRate);
end

Alternatively, you can read frames from a video starting at a specified frame index to the end of the
video by using the read method. Specify the indices to read as [100 Inf]. The read method
returns all the frames starting at 100 to the end of the video file.

vidframes = read(vidObj,[100 Inf]);

Read Video Files

Read Frames Within Specified Interval
Read a part of a video file by specifying the time or frame interval.

Read the video frames between 0.6 and 0.9 seconds. First, create a video reader object and a
structure array to hold the frames.

vidObj = VideoReader('xylophone.mp4');
s = struct('cdata',zeros(vidObj.Height,vidObj.Width,3, 'uint8"), 'colormap',[1);

Then, specify that reading should begin 0.6 second from the beginning of the file by setting the
CurrentTime property.

vidObj.CurrentTime = 0.6;

Read one frame at a time until CurrentTime reaches 0.9 second. Append data from each video
frame to the structure array. View the number of frames in the structure array. s is a 1-by-10
structure indicating that 10 frames were read. For information on displaying the frames in the
structure s as a movie, see the movie function reference page.

k =1;
while vidObj.CurrentTime <= 0.9
s(k).cdata = readFrame(vidObj);

k = k+1;
end
whos s
Name Size Bytes Class Attributes
S 1x10 2305344 struct

Alternatively, you can read all the frames in a specified interval by using frame indices. For example,
specify the second argument of read as [18 27]. The read method returns a FrameSize-by-10
array indicating that 10 frames were read.

frames = read(vidObj,[18 27]);
whos frames

Name Size Bytes C(lass Attributes
frames 240x320x3x10 2304000 wuint8

Read All Frames
Read all the frames from video, one frame at a time or all the frames at once.

Create a video reader object and display the total number of frames in the video.

vidObj = VideoReader('xylophone.mp4');
vidObj .NumFrames

ans = 141
Read all the frames, one frame at a time, by using the readFrame method, and display the frames.
while hasFrame(vidObj)

frame = readFrame(vidObj);
imshow(frame)

8-9

8 Audio and Video

8-10

pause(1l/vidObj.FrameRate);
end

Alternatively, you can read all the video frames at once. The read method returns a FrameSize-
by-141 array of video frames.

allFrames = read(vidObj);
whos allFrames

Name Size Bytes C(lass Attributes
allFrames 240x320x3x141 32486400 uint8
Troubleshooting and Tips for Video Reading

* The hasFrame method might return logical 1 (true) when the value of the CurrentTime property
is equal to the value of the Duration property. This is due to a limitation in the underlying APIs
used.

* Seeking to the last frame in a video file by setting the CurrentTime property to a value close to
the Duration value is not recommended. For some files, this operation returns an error
indicating that the end-of-file has been reached, even though the CurrentTime value is less than
the Duration value. This typically occurs if the file duration is larger than the duration of the
video stream, and there is no video available to read near the end of the file.

o Use of the Duration property to limit the reading of data from a video file is not recommended.
Use the hasFrame method to check whether there is a frame available to read. It is best to read
data until the file reports that there are no more frames available to read.

* Video Reading Performance on Windows® Systems: To achieve better video reader performance
on Windows for MP4 and MOV files, MATLAB® uses the system’s graphics hardware for decoding.
However, in some cases using the graphics card for decoding can result in poorer performance
depending on the specific graphics hardware on the system. If you notice slower video reader
performance on your system, turn off the hardware acceleration by typing:

Read Video Files

matlab.video.read.UseHardwareAcceleration('off"'). You can reenable hardware
acceleration by typing: matlab.video.read.UseHardwareAcceleration('on').

See Also
VideoReader | mmfileinfo | movie | read | readFrame

More About
. “Supported Video and Audio File Formats” on page 8-12

8-11

8 Audio and Video

Supported Video and Audio File Formats

Video and audio files in MATLAB and their supported file formats and codecs.

Video Data in MATLAB
What Are Video Files?

For video data, the term “file format” often refers to either the container format or the codec. A
container format describes the layout of the file, while a codec describes how to encode/decode the
video data. Many container formats can hold data encoded with different codecs.

To read a video file, any application must:

* Recognize the container format (such as AVI).

* Have access to the codec that can decode the video data stored in the file. Some codecs are part
of standard Windows and Macintosh system installations, and allow you to play video in Windows
Media Player or QuickTime. In MATLAB, VideoReader can access most, but not all, of these
codecs.

* Properly use the codec to decode the video data in the file. VideoReader cannot always read files
associated with codecs that were not part of your original system installation.

Formats That VideoReader Supports

Use VideoReader to read video files in MATLAB. The file formats that VideoReader supports vary
by platform, and have no restrictions on file extensions.

Platforms File Formats

All Platforms AV], including uncompressed, indexed, grayscale,
and Motion JPEG-encoded video (.avi)
Motion JPEG 2000 (.mj2)

All Windows MPEG-1 (.mpg)
Windows Media Video (.wmv, .asf, .asx)
Any format supported by Microsoft DirectShow

Windows 7 or later MPEG-4, including H.264 encoded video
(.mp4, .m4v)

Apple QuickTime Movie (.mov)

Any format supported by Microsoft Media
Foundation

8-12

Supported Video and Audio File Formats

Platforms File Formats
Macintosh Most formats supported by QuickTime Player,
including:

MPEG-1 (.mpg)

MPEG-4, including H.264 encoded video
(.mp4, .m4v)

Apple QuickTime Movie (.mov)

3GPP

3GPP2

AVCHD

DV

Note: For OS X Yosemite (Version 10.10) and
later, MPEG-4/H.264 files written using
VideoWriter, play correctly, but display an
inexact frame rate.

Linux Any format supported by your installed plug-ins
for GStreamer 1.0 or higher, as listed on https://
gstreamer.freedesktop.org/documentation/

plugins doc.html, including Ogg Theora (.0gg).

View Codec Associated with Video File

This example shows how to view the codec associated with a video file, using the mmfileinfo
function.

Store information about the sample video file, shuttle.avi, in a structure array named info. The
info structure contains the following fields: Filename, Path, Duration, Audio and Video.

info = mmfileinfo('shuttle.avi');

Show the properties in the command window by displaying the fields of the info structure. For
example, to view information under the Video field, type info.Video

info.Video

ans = struct with fields:
Format: 'MJPG'
Height: 288
Width: 512

The file, shuttle.avi, uses the Motion JPEG codec.

Troubleshooting: Errors Reading Video File

You might be unable to read a video file if MATLAB cannot access the appropriate codec. 64-bit
applications use 64-bit codec libraries, while 32-bit applications use 32-bit codec libraries. For
example, when working with 64-bit MATLAB, you cannot read video files that require access to a 32-
bit codec installed on your system. To read these files, try one of the following:

* Install a 64-bit codec that supports this file format. Then, try reading the file using 64-bit
MATLAB.

8-13

https://gstreamer.freedesktop.org/documentation/plugins_doc.html
https://gstreamer.freedesktop.org/documentation/plugins_doc.html
https://gstreamer.freedesktop.org/documentation/plugins_doc.html

8 Audio and Video

8-14

* Re-encode the file into a different format with a 64-bit codec that is installed on your computer.

Sometimes, VideoReader cannot open a video file for reading on Windows platforms. This might
occur if you have installed a third-party codec that overrides your system settings. Uninstall the
codec and try opening the video file in MATLAB again.

Audio Data in MATLAB
What Are Audio Files?

The audio signal in a file represents a series of samples that capture the amplitude of the sound over
time. The sample rate is the number of discrete samples taken per second and given in hertz. The
precision of the samples, measured by the bit depth (number of bits per sample), depends on the
available audio hardware.

MATLAB audio functions read and store single-channel (mono) audio data in an m-by-1 column vector,
and stereo data in an m-by-2 matrix. In either case, m is the number of samples. For stereo data, the
first column contains the left channel, and the second column contains the right channel.

Typically, each sample is a double-precision value between -1 and 1. In some cases, particularly when
the audio hardware does not support high bit depths, audio files store the values as 8-bit or 16-bit
integers. The range of the sample values depends on the available number of bits. For example,
samples stored as uint8 values can range from 0 to 255 (28 - 1). The MATLAB sound and soundsc
functions support only single- or double-precision values between -1 and 1. Other audio functions
support multiple data types, as indicated on the function reference pages.

Formats That audioread Supports

Use audioread to read audio files in MATLAB. The audioread function supports these file formats.

Platform Support File Format

All platforms AIFC (.aifc)

AIFF (.aiff, .aif)

AU (.au)

FLAC (. flac)

OGG (.0g9)

OPUS (.opus)

WAVE (.wav)

Windows 7 (or later), Macintosh, and Linux MP3 (.mp3)

MPEG-4 AAC (.m4a, .mp4)

On Windows platforms prior to Windows 7, audioread does not read WAVE files with MP3 encoded
data.

On Windows 7 (or later) platforms, audioread might also read any files supported by Windows
Media Foundation.

On Linux platforms, audioread might also read any files supported by GStreamer.

Supported Video and Audio File Formats

audioread can extract audio from MPEG-4 (. mp4, .m4v) video files on Windows 7 or later,
Macintosh, and Linux, and from Windows Media Video (.wmv) and AVI (.avi) files on Windows 7 (or
later) and Linux platforms.

See Also
VideoReader | audioread | mmfileinfo | audioinfo

More About

. “Read Video Files” on page 8-8
. “Read and Write Audio Files” on page 8-2

8-15

8 Audio and Video

Convert Between Image Sequences and Video

8-16

Convert between video files and sequences of image files using VideoReader and VideoWriter.

The sample file named shuttle.avi contains 121 frames. Convert the frames to image files using
VideoReader and the imwrite function. Then, convert the image files to an AVI file using
VideoWriter.

Setup

Create a temporary working folder to store the image sequence.
workingDir = tempname;

mkdir(workingDir)

mkdir(workingDir, 'images"')

Create VideoReader

Create a VideoReader to use for reading frames from the file.

shuttleVideo = VideoReader('shuttle.avi');

Create the Image Sequence

Loop through the video, reading each frame into a width-by-height-by-3 array named img. Write out
each image to a JPEG file with a name in the form imgN. jpg, where N is the frame number.

| img001.jpg]

| img002.jpg]|

| ...|

| img121.jpg|

ii = 1;

while hasFrame(shuttleVideo)
img = readFrame(shuttleVideo);
filename = [sprintf('%03d',ii) '.jpg'l;
fullname = fullfile(workingDir, 'images',filename);
imwrite(img, fullname) % Write out to a JPEG file (imgl.jpg, img2.jpg, etc.)
ii = ii+1;

end

Find Image File Names

Find all the JPEG file names in the images folder. Convert the set of image names to a cell array.

imageNames
imageNames

= dir(fullfile(workingDir,'images', '*.jpg"));
= {imageNames.name}';

Create New Video with the Image Sequence

Construct a VideoWriter object, which creates a Motion-JPEG AVI file by default.

Convert Between Image Sequences and Video

outputVideo = VideoWriter(fullfile(workingDir, 'shuttle out.avi'));
outputVideo.FrameRate = shuttleVideo.FrameRate;
open(outputVideo)

Loop through the image sequence, load each image, and then write it to the video.
for ii = 1:1length(imageNames)
img = imread(fullfile(workingDir, 'images',imageNames{ii}));
writeVideo(outputVideo,img)
end
Finalize the video file.
close(outputVideo)

View the Final Video

Construct a reader object.

shuttleAvi = VideoReader(fullfile(workingDir, 'shuttle out.avi'));
Create a MATLAB® movie struct from the video frames.

ii = 1;

while hasFrame(shuttleAvi)
mov(ii) = im2frame(readFrame(shuttleAvi));
il = ii+1;

end

Resize the current figure and axes based on the video's width and height, and view the first frame of
the movie.

figure
imshow(mov(1l).cdata, 'Border', 'tight')

Play back the movie once at the video's frame rate.

movie(mov,1,shuttleAvi.FrameRate)

8-17

8 Audio and Video

Credits

Video of the Space Shuttle courtesy of NASA.

8-18

XML Documents

* “Import an XML File into a Document Object Model” on page 9-2
» “Export a Document Object Model to an XML File” on page 9-6

9 XML Documents

Import an XML File into a Document Object Model

9-2

You can import an XML file into a Document Object Model (DOM) document node by using a
matlab.io.xml.dom.Parser object or the xmlread function.

The matlab.io.xml.dom.Parser class belongs to the MATLAB API for XML Processing (MAXP).
When you use a MAXP Parser object to read an XML file, the resulting DOM document node is
represented as a matlab.io.xml.dom.Document object. For a list of the classes that you can use to
work with a Document object, see matlab.io.xml.dom. You do not need Java® software to use
MAXP classes.

To work with a DOM document node object created by xmlread, you must use the Java API for XML
Processing (JAXP). For a list of the JAXP methods and properties, see the org.w3c.dom package
description at https://docs.oracle.com/javase/7/docs/api.

The XML Document Object Model

In a Document Object Model, every item in an XML file corresponds to a node. The properties and
methods that you use to create and access nodes, follow standards set by the World Wide Web
consortium.

For example, consider this sample XML file:

<productinfo>

<!-- This is a sample info.xml file. -->

<list>

<listitem>

<label color="blue">Import Wizard</label>

<callback>uiimport</callback>

<icon>ApplicationIcon.GENERIC_ GUI</icon>

</listitem>

<listitem>

<label color="red">Profiler</label>

<callback>profile viewer</callback>

<icon>ApplicationIcon.PROFILER</icon>

</listitem>

</list>
</productinfo>

The information in the file maps to the following types of DOM nodes:

* Element nodes — Correspond to tag names. In the info.xml file, these tags correspond to
element nodes:

* productinfo

+ list

o Tlistitem
+ Tlabel

* callback
* 1icon

In this case, the 1ist element is the parent of listitem element child nodes. The productinfo
element is the root element node.

https://docs.oracle.com/javase/7/docs/api/org/w3c/dom/package-summary.html

Import an XML File into a Document Object Model

+ Text nodes — Contain values associated with element nodes. Every text node is the child of an
element node. For example, the Import Wizard text node is the child of the first label element
node.

» Attribute nodes — Contain name and value pairs associated with an element node. For example, in
the first label element node, color is the name of an attribute and blue is its value. Attribute
nodes are not parents or children of any nodes.

* Comment nodes — Include additional text in the file, in the form <! - -Sample comment-->.

* Document nodes — Correspond to the entire file. Use methods on the document node to create
new element, text, attribute, or comment nodes.

Read an XML File Using the MAXP Parser

This example uses a matlab.io.xml.dom.Parser object to read an info.xml file into a
matlab.io.xml.dom.Document node. The file contains several listitem elements. Each
listitem element contains a label and callback element. The example uses MAXP methods to
find the text content of the callback element that corresponds to the label that has text content
Plot Tools.

Read the file into a Document object.

infoFile = fullfile(matlabroot, 'toolbox/matlab/general/info.xml");

infolLabel = 'Plot Tools';
infoCbk = '';
itemFound = false;

import matlab.io.xml.dom.*
xDoc = parseFile(Parser,infoFile);

Find all the listitem elements by calling the getElementsByTagName method, which returns a
matlab.io.xml.dom.NodelList object.

allListItems = getElementsByTagName(xDoc, 'listitem');

For each listitem element, compare the text of the label element to Plot Tools. When you
locate the correct label, get the callback text. To access an element in the NodeList object, use
the node method, which uses one-based indexing. Alternatively, you can use the item method, which
uses zero-based indexing.

length = allListItems.Length;
for i=1:1length

thisListItem = node(allListItems,i);
childNode = getFirstChild(thisListItem);

while ~isempty(childNode)
%Filter out text, comments, and processing instructions.

if isa(childNode, 'matlab.io.xml.dom.Element"')
%Assume that each element has a single Text child

childText = getData(getFirstChild(childNode));
switch getTagName(childNode)

case 'label’

9-3

9 XML Documents

itemFound = strcmp(childText,infolLabel);
case 'callback'
infoCbk = childText;

end

end

childNode = getNextSibling(childNode);
end
if itemFound

break
else

infoCbk = '';
end

end
Display the result.
fprintf('Item "%s" has a callback of "%s".\n', infolLabel, infoCbk);

Item "Plot Tools" has a callback of "figure; plottools".

Read an XML File Using xmliread

This example uses xmlread to read the info.xml file into a DOM document node and Java API for
XML Processing methods to find the text content of the callback element that corresponds to the
label that has text content Plot Tools.

infoFile = fullfile(matlabroot, 'toolbox/matlab/general/info.xml");
infoLabel = 'Plot Tools';

infoCbk = '';

itemFound = false;

xDoc = xmlread(infoFile);
allListItems = getElementsByTagName(xDoc, 'listitem"');

%The item list index is zero-based.
length = allListItems.getLength-1;
for i=0:1length

thisListItem = item(allListItems,i);
childNode = getFirstChild(thisListItem);

while ~isempty(childNode)
%Filter out text, comments, and processing instructions.

if childNode.getNodeType == childNode.ELEMENT NODE
%Assume that each element has a single org.w3c.dom.Text child

childText = char(childNode.getFirstChild.getData);

switch char(childNode.getTagName)
case 'label'
itemFound = strcmp(childText,infolLabel);
case 'callback'
infoCbk = childText;
end
end
childNode = getNextSibling(childNode);
end
if itemFound
break
else
infoCbk = '';
end
end
fprintf('Item "%s" has a callback of "%s".\n', infolLabel,infoCbk);

9-4

Import an XML File into a Document Object Model

Item "Plot Tools" has a callback of "figure; plottools".

See Also
matlab.io.xml.dom.Document | xmlread

Related Examples
. “Export a Document Object Model to an XML File” on page 9-6

External Websites

. https://docs.oracle.com/javase/7/docs/api

https://docs.oracle.com/javase/7/docs/api

9 XML Documents

Export a Document Object Model to an XML File

9-6

You can export a Document Object Model (DOM) document node to an XML file by using a
matlab.io.xml.dom.DOMWriter object or the xmlwrite function.

The matlab.io.xml.dom.DOMWriter class belongs to the MATLAB API for XML Processing
(MAXP). To use a MAXP DOMWriter object, represent a DOM document node as a
matlab.io.xml.dom.Document object. To create and add elements, text, and other nodes to the
document node, use MAXP classes and methods. See matlab.io.xml.dom. You do not need Java
software to use MAXP classes.

To create a DOM document that you can write by using xmlwrite, use
com.mathworks.xml.XMLUtils.createDocument. To create and add nodes to the document
node, use methods of the Java API for XML Processing (JAXP). See the org.w3c.dom package
description at https://docs.oracle.com/javase/7/docs/api.

Create a DOM Document

Common steps for creating an XML document include:

1 Create a document node and define the root element. This code creates a document node by
creating a MAXP matlab.io.xml.dom.Document object:

import matlab.io.xml.dom.*
docNode = Document('root element');

This code creates a document node that you can use with JAXP methods:

docNode = com.mathworks.xml.XMLUtils.createDocument('root element');

2 Get the node that corresponds to the root element by calling getDocumentElement. The root
element node is required to add child nodes.

3 Add element, text, comment, and attribute nodes by calling methods of the document node.
Useful methods include:

* createElement
* createTextNode

e createComment

+ setAttribute
4 To append child nodes to a parent node, use appendChild.

Tip Text nodes are always children of element nodes. To add a text node, use createTextNode
with the document node, and then use appendChild with the parent element node.

Write a DOM Document Node to an XML File Using a MAXP DOMWriter
Object

This example uses a matlab.io.xml.dom.DOMWriter object to create an info.xml file for the
Upslope Area Toolbox, which is described in “Display Custom Documentation”.

Create the document node and root element, toc.

https://docs.oracle.com/javase/7/docs/api/org/w3c/dom/package-summary.html

Export a Document Object Model to an XML File

import matlab.io.xml.dom.*
docNode = Document('toc');

Get the root element, and set the version attribute.

toc = docNode.getDocumentElement;
setAttribute(toc, 'version', '2.0");

Add the tocitem element node for the product page. Each tocitem element in this file has a
target attribute and a child text node.

product = createElement(docNode, 'tocitem');
setAttribute(product, 'target', 'upslope product page.html');
appendChild(product, createTextNode(docNode, 'Upslope Area Toolbox'));
appendChild(toc,product);

Add a comment.

appendChild(product, createComment(docNode,' Functions '));

Add a tocitem element node for each function.

functions = {'demFlow', 'facetFlow', 'flowMatrix"', 'pixelFlow'};
n = numel(functions);
for idx = 1:n
curr_node createElement (docNode, 'tocitem');
curr_file [functions{idx} ' help.html'];
setAttribute(curr node, 'target',curr file);

% Child text is the function name.
appendChild(curr_node,createTextNode(docNode, functions{idx}));
appendChild(product,curr_node);

end

Export the DOM node to info.xml, and view the file.

xmlFileName = 'info.xml';
writer = matlab.io.xml.dom.DOMWriter;
writer.Configuration.FormatPrettyPrint = true;

writeToFile(writer,docNode,xmlFileName);
type('info.xml');

<?xml version="1.0" encoding="UTF-8" standalone="no" 7>
<toc version="2.0">

<tocitem target="upslope product page.html">Upslope Area Toolbox
<l-- Functions -->
<tocitem target="demFlow _help.html">demFlow</tocitem>
<tocitem target="facetFlow help.html">facetFlow</tocitem>
<tocitem target="flowMatrix help.html">flowMatrix</tocitem>
<tocitem target="pixelFlow help.html">pixelFlow</tocitem>
</tocitem>

9 XML Documents

9-8

</toc>

Write a DOM Document Node to an XML File Using xmlwrite

This example uses xmlwrite to create an info.xml file for the Upslope Area Toolbox, which is

described in “Display Custom Documentation”.

docNode = com.mathworks.xml.XMLUtils.createDocument('toc');
toc = docNode.getDocumentElement;
toc.setAttribute('version','2.0');

product = docNode.createElement('tocitem');
product.setAttribute('target', 'upslope product page.html');

product.appendChild(docNode.createTextNode('Upslope Area Toolbox'));

toc.appendChild(product)
product.appendChild(docNode.createComment(' Functions '));
functions = {'demFlow', 'facetFlow', 'flowMatrix"', 'pixelFlow'};
for idx = 1l:numel(functions)

curr_node = docNode.createElement('tocitem');

curr_file = [functions{idx} ' help.html'];
curr_node.setAttribute('target',curr file);

% Child text is the function name.
curr_node.appendChild(docNode.createTextNode(functions{idx}));
product.appendChild(curr_node);

end

xmlwrite('info.xml',docNode);

type('info.xml");

<?xml version="1.0" encoding="utf-8"?>
<toc version="2.0">
<tocitem target="upslope product page.html">Upslope Area Toolbox<!-- Functions
<tocitem target="facetFlow help.html">facetFlow</tocitem>
<tocitem target="flowMatrix_help.html">flowMatrix</tocitem>
<tocitem target="pixelFlow help.html">pixelFlow</tocitem>
</tocitem>
</toc>

Update an Existing XML File

To change data in an existing file:

--><tocitem target="demFlow_help.html":

1 TImport the file into a DOM document node by using a matlab.io.xml.dom.Parser object or

xmlread.
2 Traverse the node and add or change data using methods, such as:

* getElementsByTagName
* getFirstChild

* getNextSibling

* getNodeName

* getNodeType

If you use matlab.io.xml.dom.Parser to read the XML file into a

matlab.io.xml.dom.Document, use MATLAB API for XML Processing (MAXP) classes and

Export a Document Object Model to an XML File

methods. See matlab.io.xml.dom. If you use xmlread, use Java API for XML Processing
(JAXP) methods. See the org.w3c.dom package description at https://docs.oracle.com/
javase/7/docs/api.

3 When the DOM document contains all your changes, write the file. For a MAXP DOM document,
use amatlab.io.xml.DOMWriter object. For a JAXP DOM document, use xmlwrite.

See Also
matlab.io.xml.dom.Document | matlab.io.xml.dom.DOMWriter | xmlwrite

Related Examples
. “Import an XML File into a Document Object Model” on page 9-2

External Websites

. https://docs.oracle.com/javase/7/docs/api

9-9

https://docs.oracle.com/javase/7/docs/api/org/w3c/dom/package-summary.html
https://docs.oracle.com/javase/7/docs/api/org/w3c/dom/package-summary.html
https://docs.oracle.com/javase/7/docs/api

Memory-Mapping Data Files

* “Overview of Memory-Mapping” on page 10-2

* “Map File to Memory” on page 10-5

+ “Read from Mapped File” on page 10-9

* “Write to Mapped File” on page 10-14

* “Delete Memory Map” on page 10-19

* “Share Memory Between Applications” on page 10-20

10 Memory-Mapping Data Files

Overview of Memory-Mapping

10-2

In this section...

“What Is Memory-Mapping?” on page 10-2
“Benefits of Memory-Mapping” on page 10-2
“When to Use Memory-Mapping” on page 10-3
“Maximum Size of a Memory Map” on page 10-4

“Byte Ordering” on page 10-4

What Is Memory-Mapping?

Memory-mapping is a mechanism that maps a portion of a file, or an entire file, on disk to a range of
addresses within an application's address space. The application can then access files on disk in the
same way it accesses dynamic memory. This makes file reads and writes faster in comparison with
using functions such as fread and fwrite.

Benefits of Memory-Mapping

The principal benefits of memory-mapping are efficiency, faster file access, the ability to share
memory between applications, and more efficient coding.

Faster File Access

Accessing files via memory map is faster than using [/O functions such as fread and fwrite. Data
are read and written using the virtual memory capabilities that are built in to the operating system
rather than having to allocate, copy into, and then deallocate data buffers owned by the process.

MATLAB does not access data from the disk when the map is first constructed. It only reads or writes
the file on disk when a specified part of the memory map is accessed, and then it only reads that
specific part. This provides faster random access to the mapped data.

Efficiency

Mapping a file into memory allows access to data in the file as if that data had been read into an
array in the application's address space. Initially, MATLAB only allocates address space for the array;
it does not actually read data from the file until you access the mapped region. As a result, memory-
mapped files provide a mechanism by which applications can access data segments in an extremely
large file without having to read the entire file into memory first.

Efficient Coding Style

Memory-mapping in your MATLAB application enables you to access file data using standard
MATLAB indexing operations. Once you have mapped a file to memory, you can read the contents of
that file using the same type of MATLAB statements used to read variables from the MATLAB
workspace. The contents of the mapped file appear as if they were an array in the currently active
workspace. You simply index into this array to read or write the desired data from the file. Therefore,
you do not need explicit calls to the fread and fwrite functions.

In MATLAB, if x is a memory-mapped variable, and y is the data to be written to a file, then writing to
the file is as simple as

Overview of Memory-Mapping

x.Data = vy;
Sharing Memory Between Applications
Memory-mapped files also provide a mechanism for sharing data between applications, as shown in

the figure below. This is achieved by having each application map sections of the same file. You can
use this feature to transfer large data sets between MATLAB and other applications.

Process 1

%
5%

2 GB

Memory -Mapped
File

Process 2

b5

ST

55

Also, within a single application, you can map the same segment of a file more than once.

2 GB

[T

0

When to Use Memory-Mapping

Just how much advantage you get from mapping a file to memory depends mostly on the size and
format of the file, the way in which data in the file is used, and the computer platform you are using.

When Memory-Mapping Is Most Useful

Memory-mapping works best with binary files, and in the following scenarios:

* For large files that you want to access randomly one or more times

» For small files that you want to read into memory once and access frequently
» For data that you want to share between applications

* When you want to work with data in a file as if it were a MATLAB array

When the Advantage Is Less Significant

The following types of files do not fully use the benefits of memory-mapping:

10-3

10 Memory-Mapping Data Files

10-4

* Formatted binary files like HDF or TIFF that require customized readers are not good for memory-
mapping. Describing the data contained in these files can be a very complex task. Also, you cannot
access data directly from the mapped segment, but must instead create arrays to hold the data.

» Text or ASCII files require that you convert the text in the mapped region to an appropriate type
for the data to be meaningful. This takes up additional address space.

* Files that are larger than several hundred megabytes in size consume a significant amount of the
virtual address space needed by MATLAB to process your program. Mapping files of this size may
result in MATLAB reporting out-of-memory errors more often. This is more likely if MATLAB has
been running for some time, or if the memory used by MATLAB becomes fragmented.

Maximum Size of a Memory Map

Due to limits set by the operating system and MATLAB, the maximum amount of data you can map
with a single instance of a memory map is 2 gigabytes on 32-bit systems, and 256 terabytes on 64-bit
systems. If you need to map more than this limit, you can either create separate maps for different
regions of the file, or you can move the window of one map to different locations in the file.

Byte Ordering

Memory-mapping works only with data that have the same byte ordering scheme as the native byte
ordering of your operating system. For example, because both Linus Torvalds' Linux and Microsoft
Windows systems use little-endian byte ordering, data created on a Linux system can be read on
Windows systems. You can use the computer function to determine the native byte ordering of your
current system.

Map File to Memory

Map File to Memory

In this section...

“Create a Simple Memory Map” on page 10-5
“Specify Format of Your Mapped Data” on page 10-6
“Map Multiple Data Types and Arrays” on page 10-6

“Select File to Map” on page 10-8

Create a Simple Memory Map

Suppose you want to create a memory map for a file named records.dat, using the memmapfile
function.

Create a sample file named records.dat, containing 5000 values.

rng('default"')
myData = rand([5000,1]);

fileID = fopen('records.dat','w');
fwrite(fileID, myData, 'double');
fclose(filelD);

Next, create the memory map. Use the Format name-value pair argument to specify that the values
are of type double. Use the Writable name-value pair argument to allow write access to the
mapped region.

m = memmapfile('records.dat',
'"Format', 'double',
'Writable', true)

m:

Filename: 'd:\matlab\records.dat'
Writable: true

Offset: O
Format: 'double'
Repeat: Inf

Data: 5000x1 double array

MATLAB creates a memmapfile object, m. The Format property indicates that read and write
operations to the mapped region treat the data in the file as a sequence of double-precision numbers.
The Data property contains the 5000 values from the file, records.dat. You can change the value of
any of the properties, except for Data, after you create the memory map, m.

For example, change the starting position of the memory map, m. Begin the mapped region 1024
bytes from the start of the file by changing the value of the Of fset property.

m.0ffset = 1024
m =
Filename: 'd:\matlab\records.dat'

Writable: true
Offset: 1024

10-5

10 Memory-Mapping Data Files

10-6

Format: 'double’
Repeat: Inf
Data: 4872x1 double array

Whenever you change the value of a memory map property, MATLAB remaps the file to memory. The
Data property now contains only 4872 values.

Specify Format of Your Mapped Data

By default, MATLAB considers all the data in a mapped file to be a sequence of unsigned 8-bit
integers. However, your data might be of a different data type. When you call the memmapfile
function, use the Format name-value pair argument to indicate another data type. The value of
Format can either be a character vector that identifies a single class used throughout the mapped
region, or a cell array that specifies more than one class.

Suppose you map a file that is 12 kilobytes in length. Data read from this file can be treated as a
sequence of 6,000 16-bit (2-byte) integers, or as 1,500 8-byte double-precision floating-point
numbers, to name just a few possibilities. You also could read this data as a combination of different
types: for example, as 4,000 8-bit (1-byte) integers followed by 1,000 64-bit (8-byte) integers. You can
determine how MATLAB will interpret the mapped data by setting the Format property of the
memory map when you call the memmapfile function.

MATLAB arrays are stored on disk in column-major order. The sequence of array elements is column
1, row 1; column 1, row 2; column 1, last row; column 2, row 1, and so on. You might need to
transpose or rearrange the order of array elements when reading or writing via a memory map.

Map Multiple Data Types and Arrays

If the region you are mapping comprises segments of varying data types or array shapes, you can
specify an individual format for each segment. Specify the value of the Format name-value pair
argument as an n-by-3 cell array, where n is the number of segments. Each row in the cell array
corresponds to a segment. The first cell in the row identifies the data type to apply to the mapped
segment. The second cell contains the array dimensions to apply to the segment. The third cell
contains the field name for referencing that segment. For a memory map, m, use the following syntax:

m = memmapfile(filename,
"Format', {

datatypel, dimensionsl, fieldnamel;

datatype2, dimensions2, fieldname2;

datatypeN, dimensionsN, fieldnameN})

Suppose you have a file that is 40,000 bytes in length. The following code maps the data beginning at
the 2048th byte. The Format value is a 3-by-3 cell array that maps the file data to three different
classes: int16, uint32, and single.

m = memmapfile('records.dat’,
'Offset', 2048,
'Format', {
"intle' [2 2] 'model’;
'uint32' [1 1] 'serialno';
'single' [1 3] 'expenses'});

Map File to Memory

In this case, memmapfile maps the int16 data as a 2-by-2 matrix that you can access using the field
name, model. The uint32 data is a scalar value accessed using the field name, serialno. The
single data is a 1-by-3 matrix named expenses. Each of these fields belongs to the 800-by-1

structure array, m.Data.

This figure shows the mapping of the example file.

records.dat

LYY

2048

=
-

-
-

LI

intlg

int1g

int1a

int16

T

uint32

24 bytes

single

single

sinple

intig

intig

intl@

int16

l
!

uint32

24 bytes

single

single

l

single

LYY

=
=

-
-1

L)

intig

intig

intl@

int16

T

uint32

24 bytes

single

single

l

single

.data(1}).

.data(1).

.data(1).

.data(2).

.data(2).

.data(2).

model{1:2,1:2)

serialno

expenses(1:3)

model{1:2,1:2)

serialno

expenses(1:3)

.data(B00).model(1:2,1:2)

.data(B00).serialno

.data(B00).expenses(1:3)

The next figure shows the ordering of the array elements more closely. In particular, it illustrates that
MATLAB arrays are stored on the disk in column-major order. The sequence of array elements in the
mapped file is row 1, column 1; row 2, column 1; row 1, column 2; and row 2, column 2.

10-7

10 Memory-Mapping Data Files

records.dat

-~ . -~
..-""lll .-""ll-
L
m.data{1).model{1,1)%—F int16 | int16 ——mm.data{1).model{2,1)
m.data{1).model{1,2) — int16 int {6 =—t—mm.data (1) .model {2, 2)
intaz2
single
single

If the data in your file is not stored in this order, you might need to transpose or rearrange the order
of array elements when reading or writing via a memory map.

Select File to Map

You can change the value of the Filename property at any time after constructing the memmapfile
object. You might want to do this if:

* You want to use the same memmapfile object on more than one file.

* You save your memmapfile object to a MAT-file, and then later load it back into MATLAB in an
environment where the mapped file has been moved to a different location. This requires that you
modify the path segment of the Filename to represent the new location.

Update the path in the Filename property for a memory map using dot notation. For example, to
specify a new path, f:\testfiles\records.dat for a memory map, m, type:

m.Filename = 'f:\testfiles\records.dat'

See Also
memmapfile

More About

. “Read from Mapped File” on page 10-9
. “Write to Mapped File” on page 10-14

10-8

Read from Mapped File

Read from Mapped File

This example shows how to create two different memory maps, and then read from each of the maps
using the appropriate syntax. Then, it shows how to modify map properties and analyze your data.

You can read the contents of a file that you mapped to memory using the same MATLAB® commands
you use to read variables from the MATLAB workspace. By accessing the Data property of the
memory map, the contents of the mapped file appear as an array in the currently active workspace.
To read the data you want from the file, simply index into the array. For better performance, copy the
Data field to a variable, and then read the mapped file using this variable:

dataRef = m.Data;

for k =1 : N

y(k) = dataRef(k);

end

By contrast, reading directly from the memmapfile object is slower:
for k =1 : N

y(k) = m.Data(k);

end

Read from Memory Map as Numeric Array

First, create a sample data file named records.dat that contains a 5000-by-1 matrix of double-
precision floating-point numbers.

rng('default')
randData = rand([5000,1]);

fileID = fopen('records.dat','w');
fwrite(filelID, randData, 'double');
fclose(filelD);

Map 100 double-precision floating-point numbers from the file to memory, and then read a portion of
the mapped data. Create the memory map, m. Specify an 0f fset value of 1024 to begin the map
1024 bytes from the start of the file. Specify a Repeat value of 100 to map 100 values.

m = memmapfile('records.dat', 'Format', 'double’,
'Offset',1024, 'Repeat',100);

Copy the Data property to a variable, d. Then, show the format of d.

d = m.Data;

whos d
Name Size Bytes C(lass Attributes
d 100x1 800 double

10-9

10 Memory-Mapping Data Files

10-10

The mapped data is an 800-byte array because there are 100 double values, each requiring 8 bytes.

Read a selected set of numbers from the file by indexing into the vector, d.
d(15:20)

ans = 6x1

.3510
.5132
.4018
.0760
.2399
.1233

[cNoNoNoNoNG]

Read from Memory Map as Nonscalar Structure
Map portions of data in the file, records.dat, as a sequence of multiple data types.

Call the memmapfile function to create a memory map, m.

m = memmapfile('records.dat’,
'"Format', {
'uintle' [5 8] 'x'; -
"double’ [4 5] 'y' });

The Format parameter tells memmapfile to treat the first 80 bytes of the file as a 5-by-8 matrix of
uintl6 values, and the 160 bytes after that as a 4-by-5 matrix of double values. This pattern repeats
until the end of the file is reached.

Copy the Data property to a variable, d.
d = m.Data

d=166x1 struct array with fields:
X

y

d is a 166-element structure array with two fields. d is a nonscalar structure array because the file is
mapped as a repeating sequence of multiple data types.

Examine one structure in the array to show the format of each field.
d(3)

= struct with fields:
X: [5x8 uintl6]
y: [4x5 double]

ans

Read the x field of that structure from the file.
d(3).x
ans = 5x8 uintl6 matrix

62645 30353 12492 16358 58958 9377 48754 16323

Read from Mapped File

14152 21370 16352 21042 61010 33482 16321 22042
2657 16336 37389 35249 45699 16353 47136 59002
16360 41668 9638 33351 16366 3344 58286 31491
5368 55234 24278 16364 55768 7216 7184 16336

MATLAB formats the block of data as a 5-by-8 matrix of uint16 values, as specified by the Format
property.

Read the y field of that structure from the file.
d(3).y
ans = 4x5

0.8407 0.9293 0.6160 0.5853 0.7572
0.2543 0.3500 0.4733 0.5497 0.7537
0.8143 0.1966 0.3517 0.9172 0.3804
0.2435 0.2511 0.8308 0.2858 0.5678

MATLAB formats the block of data as a 4-by-5 matrix of double values.
Modify Map Properties and Analyze Data

This part of the example shows how to plot the Fourier transform of data read from a file via a
memory map. It then modifies several properties of the existing map, reads from a different part of
the data file, and plots a histogram from that data.

Create a sample file named double.dat.
randData = rand([5000,1]1);
fileID = fopen('double.dat','w');

fwrite(filelID, randData, 'double');
fclose(filelID);

Create a memmapfile object of 1,000 elements of type double, starting at the 1025th byte.

m = memmapfile('double.dat', 'Offset', 1024,
'"Format', 'double', 'Repeat',1000);

Copy the Data property to a variable, k. Then, get data associated with the map and plot the FFT of
the first 100 values of the map.

k = m.Data;
plot(abs(fft(k(1:100))))

10-11

10 Memory-Mapping Data Files

10-12

ED T T T T T T T T T

40

30

20

10

] i 1 h
et W= PO | Vo fI s . .'.' A oo 1 ,"'L*. r M,
/T A A Vo WAV LA e AN A
L 1 1 1 | 1 L

0 10 20 30 40 50 60 70 80 80 100

This is the first time that data is referenced and is when the actual mapping of the file to the MATLAB
address space takes place.

Change the map properties, but continue using the same file. Whenever you change the value of a
memory map property, MATLAB remaps the file to memory.

m.0ffset = 4096;
m.Format = 'single’;
m.Repeat = 800;

m is now a memmapfile object of 800 elements of type single. The map now begins at the 4096th
byte in the file, records.dat.

Read from the portion of the file that begins at the 4096th byte, and calculate the maximum value of
the data. This command maps a new region and unmaps the previous region.

X = max(m.Data)

X

single
3.2278e+38

See Also
memmapfile

Read from Mapped File

More About
. “Map File to Memory” on page 10-5
. “Write to Mapped File” on page 10-14

10-13

10 Memory-Mapping Data Files

Write to Mapped File

10-14

This example shows how to create three different memory maps, and then write to each of the maps
using the appropriate syntax. Then, it shows how to work with copies of your mapped data.

You can write to a file using the same MATLAB commands you use to access variables in the MATLAB
workspace. By accessing the Data property of the memory map, the contents of the mapped file
appear as an array in the currently active workspace. Simply index into this array to write data to the
file. The syntax to use when writing to mapped memory depends on the format of the Data property
of the memory map.

In this section...

“Write to Memory Mapped as Numeric Array” on page 10-14
“Write to Memory Mapped as Scalar Structure” on page 10-15
“Write to Memory Mapped as Nonscalar Structure” on page 10-15
“Syntaxes for Writing to Mapped File” on page 10-16

“Work with Copies of Your Mapped Data” on page 10-17

Write to Memory Mapped as Numeric Array

First, create a sample file named records.dat, in your current folder.

rng(‘'default"')
myData = rand([5000,1]);

fileID = fopen('records.dat','w');
fwrite(fileID, myData, 'double');
fclose(filelID);

Map the file as a sequence of 16-bit-unsigned integers. Use the Format name-value pair argument to
specify that the values are of type uint16.

m = memmapfile('records.dat',

'Offset', 20,
'"Format', 'uintl6’,
'Repeat',15);

Because the file is mapped as a sequence of a single class (uint16), Data is a numeric array.

Ensure that you have write permission to the mapped file. Set the Writable property of the memory
map, m, to true.

m.Writable = true;

Create a matrix X that is the same size as the Data property, and write it to the mapped part of the
file. All of the usual MATLAB indexing and class rules apply when assigning values to data via a
memory map. The class that you assign to must be big enough to hold the value being assigned.

X = uintl6(1:1:15);
m.Data = X;

Xis a 1-by-15 vector of integer values ranging from 1 to 15.

Write to Mapped File

Verify that new values were written to the file. Specify an O0f fset value of 0 to begin reading from
the beginning of the file. Specify a Repeat value of 35 to view a total of 35 values. Use the reshape
function to display the values as a 7-by-5 matrix.

m.0ffset = 0;
m.Repeat = 35;
reshape(m.Data,5,7)"'

ans = 7x5 uintl6é matrix

47739 26762 4663 16362 3197
24407 64575 16364 31612 40832

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15

12673 53994 16337 46560 44024
32781 16353 24667 24572 41957

The values in X have been written to the file, records.dat .

Write to Memory Mapped as Scalar Structure

Map a region of the file, records.dat, as a 300-by-8 matrix of type uint16 that can be referenced
by the field name, x, followed by a 200-by-5 matrix of type double that can be reference by the field
name, y. Specify write permission to the mapped file using the Writable name-value pair argument.

m = memmapfile('records.dat’,
'"Format', {
'uintle' [300 8] 'x';
"double' [200 5] 'y' }, ..
'Repeat', 1, 'Writable', true);

View the Data property
m.Data

= struct with fields:
x: [300x8 uintl6]
y: [200x5 double]

ans

Data is a scalar structure array. This is because the file, records.dat, is mapped as containing
multiple data types that do not repeat.

Replace the matrix in the field, x, with a matrix of all ones.

m.Data.x = ones(300,8, 'uintl6e');

Write to Memory Mapped as Nonscalar Structure

Map the file, records.dat, as a 25-by-8 matrix of type uint16 followed by a 15-by-5 matrix of type
double. Repeat the pattern 20 times.

m = memmapfile('records.dat’,
'"Format', {

10-15

10 Memory-Mapping Data Files

'uintle' [5 4] 'x';
‘double' [15 5] 'y' }, ...
'Repeat', 20, 'Writable', true);
View the Data property

m.Data

ans=20x1 struct array with fields:
X

y

Data is a nonscalar structure array, because the file is mapped as a repeating sequence of multiple
data types.

Write an array of all ones to the field named x in the 12th element of Data.
m.Data(12).x = ones(5,4, 'uintl6');
For the 12th element of Data, write the value, 50, to all elements in rows 3 to 5 of the field, x.
m.Data(12).x(3:5,1:end) = 50;
View the field, x, of the 12th element of Data.
m.Data(12).x
ans = 5x4 uintl6 matrix
1 1 1 1
1 1 1 1
50 50 50 50

50 50 50 50
50 50 50 50

Syntaxes for Writing to Mapped File

The syntax to use when writing to mapped memory depends on the format of the Data property of
the memory map. View the properties of the memory map by typing the name of the memmapfile
object.

This table shows the syntaxes for writing a matrix, X, to a memory map, m.

Format of the Data Property Syntax for Writing to Mapped File

Numeric array m.Data = X;

Example: 15x1 uintl6 array

Scalar (1-by-1) structure array m.Data.fieldname = X;
Example: fieldname is the name of a field.

1x1 struct array with fields:
X

y

10-16

Write to Mapped File

Format of the Data Property Syntax for Writing to Mapped File
Nonscalar (n-by-1) structure array |m.Data(k).fieldname = X;

Example: k is a scalar index and fieldname is the name of a field.

20x1 struct array with fields:
X

y

The class of X and the number of elements in X must match those of the Data property or the field of
the Data property being accessed. You cannot change the dimensions of the Data property after you
have created the memory map using the memmapfile function. For example, you cannot diminish or
expand the size of an array by removing or adding a row from the mapped array, m.Data.

If you map an entire file and then append to that file after constructing the map, the appended data is
not included in the mapped region. If you need to modify the dimensions of data that you have
mapped to a memory map, m, you must either modify the Format or Repeat properties for m, or
recreate m using the memmapfile function.

Note To successfully modify a mapped file, you must have write permission for that file. If you do not
have write permission, attempting to write to the file generates an error, even if the Writable
property is true.

Work with Copies of Your Mapped Data

This part of the example shows how to work with copies of your mapped data. The data in variable d
is a copy of the file data mapped by m.Data(2). Because it is a copy, modifying array data in d does
not modify the data contained in the file.

Create a sample file named double.dat.

myData rand([5000,1])*100;
fileID fopen('double.dat', 'w');
fwrite(fileID,myData, 'double');
fclose(filelD);

Map the file as a series of double matrices.

m = memmapfile('double.dat"',
'"Format', {
"double' [5 5] 'x';
"double' [4 5] 'y' });

View the values in m.Data(2) .x.
m.Data(2).x

ans = 5x5

95.0545 54.7696 15.6697 97.2605 85.0706
53.2131 60.9054 5.8124 60.5319 25.6792
24.7686 86.3135 33.9707 33.8236 28.5496
43.7276 38.0696 81.7176 92.7984 77.9947
66.9088 74.8956 37.7548 89.8425 70.1395

10-17

10 Memory-Mapping Data Files

10-18

Copy the contents of m.Data to the variable, d.
d = m.Data;

Write all zeros to the field named x in the copy.
d(2).x(1:5,1:5) = 0;

Verify that zeros are written to d(2) .x

d(2).x

ans = 5x5
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Verify that the data in the mapped file is not changed.

m.Data(2).x
ans = 5x5

95.0545 54.7696 15.6697 97.2605
53.2131 60.9054 5.8124 60.5319
24.7686 86.3135 33.9707 33.8236
43.7276 38.0696 81.7176 92.7984
66.9088 74.8956 37.7548 89.8425

See Also
memmapfile

More About
. “Map File to Memory” on page 10-5
. “Read from Mapped File” on page 10-9

85
25
28
77
70

.0706
.6792
.5496
.9947
.1395

Delete Memory Map

Delete Memory Map

In this section...

“Ways to Delete a Memory Map” on page 10-19

“The Effect of Shared Data Copies On Performance” on page 10-19

Ways to Delete a Memory Map

To clear a memmapfile object from memory, do any of the following:

* Reassign another value to the memmapfile object's variable
* Clear the memmapfile object's variable from memory
» Exit the function scope in which the memmapfile object was created

The Effect of Shared Data Copies On Performance

When you assign the Data field of the memmapfile object to a variable, MATLAB makes a shared
data copy of the mapped data. This is very efficient because no memory actually gets copied. In the
following statement, d is a shared data copy of the data mapped from the file:

d = m.Data;

When you finish using the mapped data, make sure to clear any variables that share data with the
mapped file before clearing the memmapfile object itself. If you clear the object first, then the
sharing of data between the file and dependent variables is broken, and the data assigned to such
variables must be copied into memory before the object is cleared. If access to the mapped file was
over a network, then copying this data to local memory can take considerable time. Therefore, if you
assign m.Data to the variable, d, you should be sure to clear d before clearing m when you are
finished with the memory map.

10-19

10 Memory-Mapping Data Files

Share Memory Between Applications

10-20

This example shows how to implement two separate MATLAB processes that communicate with each
other by writing and reading from a shared file. They share the file by mapping part of their memory
space to a common location in the file. A write operation to the memory map belonging to the first
process can be read from the map belonging to the second, and vice versa.

One MATLAB process (running send.m) writes a message to the file via its memory map. It also
writes the length of the message to byte 1 in the file, which serves as a means of notifying the other
process that a message is available. The second process (running answer.m) monitors byte 1 and,
upon seeing it set, displays the received message, puts it into uppercase, and echoes the message
back to the sender.

Prior to running the example, copy the send and answer functions to files send.m and answer.min
your current working directory.

The send Function

This function prompts you to enter text and then, using memory-mapping, passes the text to another
instance of MATLAB that is running the answer function.

function send
% Interactively send a message to ANSWER using memmapfile class.

filename = fullfile(tempdir, 'talk answer.dat');

% Create the communications file if it is not already there.
if ~exist(filename, 'file')
[f, msg] = fopen(filename, 'wb');
if f ~= -1
fwrite(f, zeros(1,256), 'uint8');
fclose(f);
else
error('MATLAB:demo:send:cannotOpenFile',
"Cannot open file "%s": %s.', filename, msg);
end
end

% Memory map the file.
m = memmapfile(filename, 'Writable', true, 'Format', 'uint8');

while true

Set first byte to zero, indicating a message is not
yet ready.

.Data(1l) = 0;

o® o°

3

str = input('Enter text (or RETURN to end): ', 's');

len = length(str);

if (len == 0)
disp('Terminating SEND function.')
break;

end

% Warn if the message is longer than 255 characters.
if len > 255

Share Memory Between Applications

warning('ml:ml"', 'SEND input will be truncated to 255 characters.');

end
str = str(l:min(len,255)); % Limit message to 255 characters.
len = length(str); % Update len if str has been truncated.

% Update the file via the memory map.
m.Data(2:1len+l) = str;
m.Data(1l)=1len;

% Wait until the first byte is set back to zero,
% indicating that a response is available.
while (m.Data(1l) ~= 0)
pause(.25);
end

% Display the response.
disp('response from ANSWER is:')
disp(char(m.Data(2:1len+l1))"')

end
The answer Function

The answer function starts a server that, using memory-mapping, watches for a message from send.
When the message is received, answer replaces the message with an uppercase version of it, and
sends this new message back to send. To use answer, call it with no inputs.

function answer
% Respond to SEND using memmapfile class.

disp('ANSWER server is awaiting message');
filename = fullfile(tempdir, 'talk answer.dat');

% Create the communications file if it is not already there.
if ~exist(filename, 'file')
[f, msg] = fopen(filename, 'wb');
if f ~= -1
fwrite(f, zeros(1,256), 'uint8');
fclose(f);
else
error('MATLAB:demo:answer:cannotOpenFile',
"Cannot open file "%s": %s.', filename, msg);
end
end

% Memory map the file.
m = memmapfile(filename, 'Writable', true, 'Format', 'uint8');

while true
% Wait until the first byte is not zero.
while m.Data(l) ==
pause(.25);
end

The first byte now contains the length of the message.
Get it from m.

%
%

10-21

10 Memory-Mapping Data Files

10-22

msg = char(m.Data(2:1+double(m.Data(1l))))";

% Display the message.
disp('Received message from SEND:')
disp(msg)

o°

Transform the message to all uppercase.
.Data(2:1+double(m.Data(1l))) = upper(msg);

3

o°

Signal to SEND that the response is ready.
.Data(1l) = 0;

3

end
Running the Example

To see what the example looks like when it is run, first, start two separate MATLAB sessions on the
same computer system. Call the send function with no inputs in one MATLAB session. Call the
answer function in the other session, to create a map in each of the processes' memory to the
common file.

Run send in the first MATLAB session.
send

Enter text (or RETURN to end):

Run answer in the second MATLAB session.
answer

ANSWER server is awaiting message

Next, enter a message at the prompt displayed by the send function. MATLAB writes the message to
the shared file. The second MATLAB session, running the answer function, loops on byte 1 of the
shared file and, when the byte is written by send, answer reads the message from the file via its
memory map. The answer function then puts the message into uppercase and writes it back to the
file, and send (waiting for a reply) reads the message and displays it.

send writes a message and reads the uppercase reply.
Hello. Is there anybody out there?

response from ANSWER is:
HELLO. IS THERE ANYBODY OUT THERE?
Enter text (or RETURN to end):

answer reads the message from send.

Received message from SEND:
Hello. 1Is there anybody out there?

Enter a second message at the prompt display by the send function. send writes the second message
to the file.

I received your reply.

response from ANSWER is:
I RECEIVED YOUR REPLY.
Enter text (or RETURN to end):

Share Memory Between Applications

answer reads the second message, put it into uppercase, and then writes the message to the file.

Received message from SEND:
I received your reply.

In the first instance of MATLAB, press Enter to exit the example.

Terminating SEND function.

10-23

Internet File Access and JSON

11

Internet File Access and JSON

Server Authentication

11-2

MATLAB provides programmatic interfaces to these Web service interfaces.

* RESTful (Representational state transfer)—Use the webread, webwrite, and websave functions
in “Web Services” to read content from RESTful Web services.

« HTTP (Hypertext Transfer Protocol)—Use the “Use HTTP with MATLAB” API to implement
advanced HTTP messaging semantics.

To use a proxy server, see “Proxy Server Authentication” on page 11-4.

Server Authentication For RESTful Web Services

Kerberos is not supported on Linux and macOS platforms.

Authentication Platform weboptions weboptions System Setup
Arguments
Basic Windows Required Username and N/A
Linux Password
macOS
Digest Windows Required Username and N/A
Linux Password
macOS
NTLM Windows Optional Do not specify Logged into
Username or Windows domain
Password
NTLM Linux Required Username and N/A
macOS Password
Kerberos Windows Optional Do not specify Logged into
Negotiate Username or Kerberos domain
(SPNEGO) Password

Server Authentication For HTTP Web Services

Kerberos is not supported on Linux and macOS platforms.

Server Platform matlab.net.http |matlab.net.http |System Setup
Authentication HTTPOptions Credentials
Object Properties
Basic Windows Credentials Username and N/A
Digest Linux property Password
macOS
NTLM Windows Credentials Username and Logged into
property Password ignored |Windows domain
NTLM Linux Credentials Username and N/A
macOS property Password

Server Authentication

Server Platform matlab.net.http |matlab.net.http |System Setup
Authentication HTTPOptions Credentials

Object Properties
Kerberos Windows Credentials Username and Logged into
Negotiate property Password ignored |Kerberos domain
(SPNEGO)
See Also

matlab.net.http.AuthenticationScheme | matlab.net.http.HTTPOptions |

matlab.net.http.Credentials

More About
. “Proxy Server Authentication” on page 11-4
* “Web Services”

. “Use HTTP with MATLAB”

11-3

11

Internet File Access and JSON

Proxy Server Authentication

11-4

MATLAB provides programmatic interfaces to these Web service interfaces.

* RESTIful (Representational state transfer)—Use the webread, webwrite, and websave functions
in “Web Services” to read content from RESTful Web services.

* HTTP (Hypertext Transfer Protocol)—Use the “Use HTTP with MATLAB” API to implement
advanced HTTP messaging semantics.

To authenticate to a server, see “Server Authentication” on page 11-2.

RESTful Web Services

MATLAB supports Basic, Digest, and NTLM proxy authentication types. On Windows platforms,
MATLAB also supports Kerberos. To specify proxy server settings, choose one of these:

1 “Use MATLAB Web Preferences For Proxy Server Settings” on page 11-4
2 “Use System Settings For Proxy Server Settings” on page 11-5

If you specify the values using Web preferences, then MATLAB ignores system settings.

HTTP Web Services

MATLAB supports Basic, Digest, and NTLM proxy authentication types. On Windows platforms,
MATLAB also supports Kerberos. To specify proxy server settings, choose one of these:

1 [fyou specify a ProxyURI in a matlab.net.http.HTTPOptions object, then set the Username
and Password properties in matlab.net.http.Credentials.

“Use MATLAB Web Preferences For Proxy Server Settings” on page 11-4
3 “Use System Settings For Proxy Server Settings” on page 11-5

MATLAB chooses the first setting in this list.

Use MATLAB Web Preferences For Proxy Server Settings

You can specify proxy server settings using MATLAB “Web Preferences”.

Note Settings in Web Preferences override system settings.

To specify the proxy server settings:

1 Onthe Home tab, in the Environment section, click & Preferences. Select MATLAB > Web.
2 Select the Use a proxy server to connect to the Internet check box.
3 Specify values for Proxy host and Proxy port.

Examples of acceptable formats for the host are: 172.16.10.8 and ourproxy. For the port,
enter an integer only, such as 22. If you do not know the values for your proxy server, ask your
system or network administrator for the information.

Proxy Server Authentication

If your proxy server requires a user name and password, select the Use a proxy with
authentication check box. Then enter your proxy user name and password.
4 Ensure that your settings work by clicking the Test connection button.

MATLAB attempts to connect to https://www.mathworks.com:

+ If MATLAB can access the Internet, Success! appears next to the button.

+ If MATLAB cannot access the Internet, Failed! appears next to the button. Correct the values
you entered and try again. If you still cannot connect, try using the values you used when you
authenticated your MATLAB license.

5 Click OK to accept the changes.
6 Restart MATLAB to enable the changes.

Use System Settings For Proxy Server Settings

If no proxy is specified in MATLAB Web preferences, then MATLAB uses the proxy set in the
operating system preferences.

Operating System System Proxy Settings

Windows Network & Internet section of Settings

macOS Network section of System Preferences

Linux Environment variables http proxy and
https proxy

To specify proxy server settings in system preferences, refer to your Windows, Linux, or macOS
operating system documentation.

MATLAB does not take into account proxy exceptions which you configure in Windows.

See Also
matlab.net.http.HTTPOptions | matlab.net.http.Credentials

More About
. “Server Authentication” on page 11-2
. “Web Services”

. “Use HTTP with MATLAB”

11-5

11 interet File Access and JSON

MATLAB and Web Services Security

This topic describes how MATLAB handles security for web services. For a complete description of
computer security, you need to consult external resources.

MATLAB Does Not Verify Certificate Chains

For HTTPS connections, the webread, webwrite, and websave functions verify that the certificate
domain matches the host name of the web service. These functions do not verify the certificate chain.
For a complete description of computer security, you need to consult external resources.

See Also
webread | webwrite | websave

11-6

Download Data from Web Service

Download Data from Web Service

This example shows how to download data from a web service with the webread function. The World
Bank provides various climate data via the World Bank Climate Data API. A call to this API returns
data in JSON format. webread converts JSON objects to structures that are convenient for analysis in
MATLAB.

Use webread to read USA average annual temperatures into a structure array.

api '"http://climatedataapi.worldbank.org/climateweb/rest/vl/";
url [api 'country/cru/tas/year/USA'];
S = webread(url)

112x1 struct array with fields:

year
data

webread converted the data to a structure array with 112 elements. Each structure contains the
temperature for a given year, from 1901 to 2012.

S(1)
ans =
year: 1901
data: 6.6187
S(112)
ans =
year: 2012
data: 7.9395

Plot the average temperature per year. Convert the temperatures and years to numeric arrays.
Convert the years to a datetime object for ease of plotting, and convert the temperatures to degrees

Fahrenheit.

temps = [S.datal;

temps = 9/5 * temps + 32;

years = [S.year];

yearstoplot = datetime(years,1,1);
figure

plot(yearstoplot, temps);

title('USA Average Temperature 1901-2012"')
xlabel('Year')

ylabel('Temperature (~{\circ}F)")

xmin = datetime(1899,1,1);

xmax = datetime(2014,1,1);

xlim([xmin xmax])

11-7

11

Internet File Access and JSON

11-8

USA Average Temperature 1901-2012

ﬁ

Temperature (F)

B
L
o

43r

4257

424

I
|

|
~\

|

f
i
Il

I|I|IIII|

| V‘ ”"|'

| hﬁ/

I
I
H||I'

1900

1920

1940

1960
Year

Overplot a least-squares fit of a line to the temperatures.

p = polyfit(years,temps,1);
ptemps = polyval(p,years);

deltat =
hold on

fl =

p(l);

plot(yearstoplot, ptemps);
x1lim([xmin xmax])

title('USA Average Temperature Trend 1901-2012')

xlabel('Year")

ylabel('Temperature (~{\circ}F)")
deltat = num2str(10.0*deltat);
legend(fl,['Least Squares Fit, ',

hold off

deltat,

1980

2000

'"“{\circ}F/decade'])

Download Data from Web Service

USA Average Temperature Trend 1901-2012

Least Squares Fit, 0.15119 F/decade |'

E

Temperature (F)

B
L
o

T

stV I

425 |i .

42 1 1 1 1 1 1
1900 1920 1940 1960 1980 2000

Year

API and data courtesy of the World Bank: Climate Data API. (See World Bank: Climate Data API for
more information about the API, and World Bank: Terms of Use.)

11-9

https://datahelpdesk.worldbank.org/knowledgebase/topics/125589
https://data.worldbank.org/summary-terms-of-use

11

Internet File Access and JSON

Convert Data from Web Service

11-10

This example shows how to download data from a web service and use a function as a content reader
with webread.

The National Geophysical Data Center (NGDC) provides various geophysical and space weather data
via a web service. Among other data sets, the NGDC aggregates sunspot numbers published by the
American Association of Variable Star Observers (AAVSO). Use webread to download sunspot
numbers for every year since 1945.

api
url

"http://www.ngdc.noaa.gov/stp/space-weather/';
[api 'solar-data/solar-indices/sunspot-numbers/"
'american/lists/list aavso-arssn_yearly.txt'];
spots = webread(url);

whos ('spots"')

Name Size Bytes (lass Attributes
spots 1x1269 2538 char

The NGDC web service returns the sunspot data as text. By default, webread returns the data as a
character array.

spots(1:100)

ans =
American
Year SSN
1945 32.3
1946 99.9
1947 170.9
1948 166.6

webread can use a function to return the data as a different type. You can use readtable with
webread to return the sunspot data as a table.

Create a weboptions object that specifies a function for readtable.

myreadtable = @(filename)readtable(filename, 'HeaderLines',1, ...
'Format', '%f%f', 'Delimiter', 'space', 'MultipleDelimsAsOne',1);
options = weboptions('ContentReader',myreadtable);

For this data, call readtable with several Name, Value input arguments to convert the data. For
example, Format indicates that each row has two numbers. Spaces are delimiters, and multiple
consecutive spaces are treated as a single delimiter. To call readtable with these input arguments,
wrap readtable and the arguments in a new function, myreadtable. Create a weboptions object
with myreadtable as the content reader.

Download sunspot data and return the data as a table.

spots = webread(url,options);
whos ('spots"')

Name Size Bytes C(lass Attributes

spots 76x2 2932 table

Convert Data from Web Service

Display the sunspot data by column and row.

spots(1l:4,{'Year', 'SSN'})

ans =
Year SSN
1945 32.3
1946 99.9

1947 170.9
1948 166.6

Plot sunspot numbers by year. Use table functions to select sunspot numbers up to the year 2013.
Convert the Year and SSN columns to arrays and plot them.

rows spots.Year < 2014;
vars {'Year','SSN'};
spots = spots(rows,vars);
year = spots.Year;
numspots = spots.SSN;
figure
plot(year,numspots);
title('Sunspot Data');
xlabel('Year');
ylabel('Number of Sunspots');
x1im([1940 2015])

ylim([0 180])

11-11

11

Internet File Access and JSON

Sunspot Data
180 ; ' ; ; ; ; '
160 |M| |'ﬂ'|I
A \
140 | | || I|| |r’“~|| | L'l
SRR A AEnE
5 120 | | | | | | 5
& | | || |
5 100 | | | || || | I|
et | I | || | | | |
o 80 | I| || | | || | | II / ||
[i¥]
|
E | | I L. || | || ||
2 60 | II | || . I'. | II / I'| /
| |I |I | I|I | '|I I|I I| I\&
or] N) L\
| | \ '|| |I '-. '.II |
20 \ ’l ., . \/ '\/ \ \/
oV \
10940 1950 1960 1970 1980 1990 2000 2010
Year

Aggregated data and web service courtesy of the NGDC. Sunspot data courtesy of the AAVSO,
originally published in AAVSO Sunspot Counts: 1943-2013, AAVSO Solar Section (R. Howe, Chair)

See NGDC Privacy Policy, Disclaimer, and Copyright for NGDC terms of service.

See AAVSO Solar Section for more information on AAVSO solar data, including terms of use.

11-12

https://www.ngdc.noaa.gov/ngdcinfo/privacy.html
https://www.aavso.org/solar

Download Web Page and Files

Download Web Page and Files

MATLAB provides two functions for reading content from RESTful web services: webread and
websave. With the webread function, you can read the contents of a web page to a character array
in the MATLAB workspace. With the websave function, you can save web page content to a file.

Because it can create a character array in the workspace, the webread function is useful for working
with the contents of web pages in MATLAB. The websave function is useful for saving web pages to a
local folder.

Note When webread returns HTML as a character array, remember that only the HTML in that
specific web page is retrieved. The hyperlink targets, images, and so on, are not retrieved.

If you need to pass parameters to a web page, the webread and websave functions let you define the
parameters as Name, Value pair arguments. For more information, see the webread and websave
reference pages.

Example — Use the webread Function

The following procedure demonstrates how to retrieve the contents of the web page listing the files
submitted to the MATLAB Central™ File Exchange, https://www.mathworks.com/matlabcentral/
fileexchange/. It assigns the results to a character array, fulllList:

filex = 'https://www.mathworks.com/matlabcentral/fileexchange/"';
fullList = webread(filex);

Retrieve a list of only those files uploaded to the File Exchange within the past seven days that
contain the word Simulink®. Set duration and term as parameters that webread passes to the web

page.
filex = 'https://www.mathworks.com/matlabcentral/fileexchange/";
recent = webread(filex, 'duration',7, 'term', 'simulink');

Example — Use the websave Function

The following example builds on the procedure in the previous section, but saves the content to a file:

Locate the list of files at the MATLAB Central File Exchange
uploaded within the past 7 days, that contain "Simulink."
filex = 'https://www.mathworks.com/matlabcentral/fileexchange/"';

)
“©
)

“©

% Save the Web content to a file.
recent = websave('contains simulink.html', filex,
'duration',7, 'term', 'simulink');

MATLAB saves the web page as contains_simulink.html. The output argument recent contains
the full path to contains simulink.html. Call the web function to display
contains_simulink.html in a browser.

web(recent)

This page has links to files uploaded to the MATLAB Central File Exchange.

11-13

https://www.mathworks.com/matlabcentral/fileexchange/
https://www.mathworks.com/matlabcentral/fileexchange/

11

Internet File Access and JSON

Call Web Services from Functions

11-14

You can call webread from functions you define. Best practice is to allow your function to pass HTTP
request options to webread.

This code sample shows how to download climate data for a country. The sample defines a function in
a file named worldBankTemps .m that downloads annual temperatures from the World Bank and
converts them to degrees Fahrenheit. You can pass additional HTTP request parameters with the
options input argument. options is a weboptions object that worldBankTemps passes to
webread. You can call worldBankTemps with a country name only when you do not need to define
any other HTTP request parameters.

function temperatures = worldBankTemps(country,options)

% Get World Bank temperatures for a country, for example, 'USA'.
api = 'http://climatedataapi.worldbank.org/climateweb/rest/v1l/";
api = [api 'country/cru/tas/year/'];

country = [api country];

The options object contains additional HTTP
request parameters. If worldBankTemps was
not passed options as an input argument,
create a default weboptions object.
if ~exist('options', 'var')

options = weboptions;
end
s = webread(country,options);

o° o° o° of

% Convert data to arrays

temperatures = struct('Years',[], 'DegreesInFahrenheit',[]);
temperatures(1l).Years = [s.year];
temperatures(1).DegreesInFahrenheit = [s.data];

% Convert temperatures to Fahrenheit
temperatures(1).DegreesInFahrenheit = temperatures(1).DegreesInFahrenheit * 9/5 + 32;
end

To get temperature data for the USA, call worldBankTemps. If the connection to the World Bank web
service times out, the service returns an error message.

S = worldBankTemps('USA")

Error using webread (line 112)

The connection to

URL 'http://climatedataapi.worldbank.org/climateweb/rest/v1l/country/cru/tas/year/USA"
timed out after 5.0 seconds. Set options.Timeout to a higher value.

If you create options and set its Timeout property to 60 seconds, then you can call
worldBankTemps again with options as an input argument. worldBankTemps passes options to
webread as an input argument. This time webread keeps the connection open for a maximum of 60
seconds.

options = weboptions('Timeout',60);
S = worldBankTemps('USA',options)

S:

Years: [1x112 double]
DegreesInFahrenheit: [1x112 double]

If your code does not allow you to pass request options to webread, that limits your ability to respond
to error messages returned by web services.

Call Web Services from Functions

Error Messages Concerning Web Service Options

When you use a web service function in MATLAB the function might return an error message that
advises you to set a property of options, such as options.Timeout. This table shows some typical
error messages that refer to options properties and actions you can take in response.

Error Message Contains Phrase Action To Be Taken

Set options.Timeout to a higher value. |options = weboptions('Timeout',b60)
data = webread(url,options)

Set options.ContentType to 'json'. options =
weboptions('ContentType', 'json')
data = webread(url,options)

...the provided authentication options = weboptions('Username', 'your
parameters, options.Username and username', 'Password', 'your password')
options.Password, are incorrect. data = webread(url,options)

11-15

11 interet File Access and JSON

Send Email

To send an email from MATLAB, use the sendmail function. You can also attach files to an email,
which lets you mail files directly from MATLAB. To use sendmail, set up your email address and your
SMTP server information with the setpref function.

The setpref function defines two mail-related preferences:
* Email address: This preference sets your email address that will appear on the message.

setpref('Internet','E mail', 'youraddress@yourserver.com');

* SMTP server: This preference sets your outgoing SMTP server address, which can be almost any
email server that supports the Post Office Protocol (POP) or the Internet Message Access Protocol
(IMAP).

setpref('Internet', 'SMTP Server', 'mail.server.network');

Find your outgoing SMTP server address in your email account settings in your email client
application. You can also contact your system administrator for the information.

Once you have properly configured MATLAB, you can use the sendmail function. The sendmail
function requires at least two arguments: the recipient's email address and the email subject.

sendmail('recipient@someserver.com', 'Hello From MATLAB!');
You can supply multiple email addresses using a cell array of character vectors.

sendmail ({'recipient@someserver.com', 'recipient2@someserver.com'},
'"Hello From MATLAB!');

You can specify a message body.

sendmail('recipient@someserver.com', 'Hello From MATLAB!',
'Thanks for using sendmail.');

You can attach files to an email.

sendmail('recipient@someserver.com', 'Hello from MATLAB!',
'Thanks for using sendmail.','C:\yourFileSystem\message.txt');

You cannot attach a file without including a message. However, the message can be empty.

You can attach multiple files to an email.
sendmail('recipient@someserver.com', 'Hello from MATLAB!',

'Thanks for using sendmail.',6{'C:\yourFileSystem\message.txt',
'C:\yourFileSystem\message2.txt'});

See Also
sendmail | setpref

11-16

Perform FTP File Operations

Perform FTP File Operations

This example shows how to use an FTP object to connect to an FTP server and perform remote file
operations. To perform any file operation on an FTP server, follow these steps:

Connect to the server using the ftp function.

Perform operations using the appropriate MATLAB® FTP functions, such as the cd, dir, and
mget functions. Specify the FTP object for all operations.

3 When you finish work on the server, close the connection using the close function.

The National Centers for Environmental Information (NCEI) maintain an anonymous FTP service
providing public access to geophysical data. Access the FTP server to list its contents, download a
file, and list contents of a subfolder.

First, open the connection.
ftpobj = ftp('ftp.ngdc.noaa.gov"')
ftpobj

FTP Object
host: ftp.ngdc.noaa.gov
user: anonymous
dir: /
mode: binary

List the contents of the top-level folder on the FTP server.

dir(ftpobj)

DMSP Solid Earth googlel2c4c939d7b90761.html mgg
INDEX. txt coastwatch hazards pub
README. txt dmsp4alan index.html tmp
STP ftp.html international wdc
Snow Ice geomag ionosonde

Download the file named INDEX. txt using the mget function. mget copies the file to the current
MATLAB folder on your local machine. To view the contents of your copy of the file, use the type
function.

mget (ftpobj, 'INDEX.txt');
type INDEX.txt

National Centers for Environmental Information (NCEI),
formerly the National Geophysical Data Center (NGDC)

INDEX of anonymous ftp area
ftp.ngdc.noaa.gov

DIRECTORY/FILE DESCRIPTION OF CONTENTS

pub/ Public access area
DMSP/ Defense Meteorological Satellite Data Archive

11-17

11

Internet File Access and JSON

11-18

geomag/ Geomagnetism and geomagnetics models

hazards/ Natural Hazards data, volcanoes, tsunamis, earthquakes
international/ International program information on IAGA/Oersted/wdc
ionosonde/ Ionosonde data

mgg/ Limited Marine Geology and Geophysics (most data in http area)
0D/ 0ffice of the Director

Snow Ice/ Snow and Ice Data Center

Solid Earth/ Historic Solid Earth Geophysics

STP/ Solar-Terrestrial Physics

tmp/ Pickup area for temporary outgoing data

wdc/ World Data Service for Geophysics, formerly World Data Centers

Please see file README.txt in this directory for more information and how to
contact NCEI. Direct E-mail inquiries to ncei.info@noaa.gov

Also see our web site: http://www.ngdc.noaa.gov/
NCEI is part of the:

U.S. Department of Commerce, National Oceanic and Atmospheric Administration (NOAA),
National Environmental Satellite, Data and Information Service (NESDIS)

Change to the subfolder named pub on the FTP server.
cd(ftpobj, 'pub')

ans =
I/publ

List the contents. pub is now the current folder on the FTP server. However, note that the current
MATLAB folder on your local machine has not changed. When you specify an FTP object using
functions such as cd and dir, the operations take place on the FTP server, not your local machine.

dir(ftpobj)
WebCD coast glac_lib krm outgoing results rgon

Close the connection to the FTP server.
close(ftpobj)

FTP service courtesy of the NCEI. See the NCEI Privacy Policy, Disclaimer, and Copyright for NCEI
terms of service.

See Also
ftp|cd| close|dir|mget

Related Examples

. “Download Web Page and Files” on page 11-13
. “Send Email” on page 11-16

. “Web Browsers and MATLAB”

https://www.ngdc.noaa.gov/ngdcinfo/privacy.html

Display Hyperlinks in the Command Window

Display Hyperlinks in the Command Window

In this section...

“Create Hyperlinks to Web Pages” on page 11-19

“Transfer Files Using FTP” on page 11-19

Create Hyperlinks to Web Pages

When you create a hyperlink to a Web page, append a full hypertext address on a single line as input
to the disp or fprintf command. For example, the following command:

disp('The MathWorks Web Site"')
displays the following hyperlink in the Command Window:

The MathWorks Web Site

When you click this hyperlink, a MATLAB Web browser opens and displays the requested page.

Transfer Files Using FTP

To create a link to an FTP site, enter the site address as input to the disp command as follows:
disp('The MathWorks FTP Site"')

This command displays the following as a link in the Command Window:

The MathWorks FTP Site

When you click the link, a MATLAB browser opens and displays the requested FTP site.

11-19

https://www.mathworks.com
ftp://ftp.mathworks.com

11 interet File Access and JSON

Customize JSON Encoding for MATLAB Classes

This example shows how to customize the jsonencode function for a user-defined MATLAB class.

This class Person.m has a public property Name and a private property Age. If you call jsonencode
to encode the data, the function only converts the public property.

classdef Person

properties
Name;
end
properties (Access = private)
Age;
end
methods
function obj = Person(name,age)
obj.Name = name;
obj.Age = age;
end
end
end

1 Display a JSON-encoded instance of Person.

obj = Person('Luke',19);
jsonencode(obj)

ans =

'{"Name":"Luke"}'
2 To display the private property Age, customize jsonencode and add it to the methods block of
class Person:

classdef Person

properties
Name;
end
properties (Access = private)
Age;
end
methods
function obj = Person(name,age)
obj.Name = name;

obj.Age = age;
end
end

function json = jsonencode(obj, varargin)
s = struct("Name", obj.Name, "Age", obj.Age);
json = jsonencode(s, varargin{:});
end
end

The signature of the function must match the jsonencode signature, which takes a class object
as input and returns a string or a character vector in JSON format.
3 Display the customized object.

11-20

Customize JSON Encoding for MATLAB Classes

obj = Person('Luke',19);
jsonencode(obj)

ans =

1 {"Name" : "Luke" , "Age” : 19}|

See Also
jsonencode

11-21

Serial Port 1/0

» “Serial Port Overview” on page 12-2

* “Create Serial Port Object” on page 12-13

* “Configure Serial Port Communication Settings” on page 12-15
* “Write and Read Serial Port Data” on page 12-17

» “Use Callbacks for Serial Port Communication” on page 12-21
* “Use Serial Port Control Pins” on page 12-22

* “Transition Your Code to serialport Interface” on page 12-26

* “Read Streaming Data from Arduino Using Serial Port Communication” on page 12-32
* “Troubleshooting Serial Port Interface” on page 12-35

* “Resolve Serial Port Connection Errors” on page 12-38

» “Serialport Warning - Unable to Read All Data” on page 12-40

» “Serialport Warning - Unable to Read Any Data” on page 12-41

12 Sserial Port 1/0

Serial Port Overview

12-2

In this section...

“What Is Serial Communication?” on page 12-2

“Serial Port Interface Standard” on page 12-2

“Supported Platforms” on page 12-3

“Connecting Two Devices with a Serial Cable” on page 12-3
“Serial Port Signals and Pin Assignments” on page 12-3
“Serial Data Format” on page 12-6

“Find Serial Port Information for Your Platform” on page 12-9

What Is Serial Communication?

Serial communication is the most common low-level protocol for communicating between two or more
devices. Normally, one device is a computer, while the other device can be a modem, a printer,
another computer, or a scientific instrument such as an oscilloscope or a function generator.

As the name suggests, the serial port sends and receives bytes of information in a serial fashion—one
bit at a time. These bytes are transmitted using either a binary format or a text (ASCII) format.

For many serial port applications, you can communicate with your instrument without detailed
knowledge of how the serial port works. Communication is established through a serial port object,
which you create in the MATLAB workspace.

If your application is straightforward, or if you are already familiar with the topics mentioned above,
you might want to begin with “Create Serial Port Object” on page 12-13.

Serial Port Interface Standard

Over the years, several serial port interface standards for connecting computers to peripheral devices
have been developed. These standards include RS-232, RS-422, and RS-485 — all of which are
supported by the serialport object. The most widely used standard is RS-232.

The current version of this standard is designated TIA/EIA-232C, which is published by the
Telecommunications Industry Association. However, the term “RS-232” is still in popular use, and is
used here to refer to a serial communication port that follows the TIA/EIA-232 standard. RS-232
defines these serial port characteristics:

* Maximum bit transfer rate and cable length

* Names, electrical characteristics, and functions of signals

* Mechanical connections and pin assignments

Primary communication uses three pins: the Transmit Data pin, the Receive Data pin, and the Ground
pin. Other pins are available for data flow control, but are not required.

Note This guide assumes that you are using the RS-232 standard. Refer to your device
documentation to see which interface standard you can use.

Serial Port Overview

Supported Platforms

The MATLAB serial port interface is supported on:

* Linux 64-bit
¢ macOS 64-bit
¢ Microsoft Windows 64-hit

Connecting Two Devices with a Serial Cable

The RS-232 and RS-485 standard defines the two devices connected with a serial cable as the data
terminal equipment (DTE) and data circuit-terminating equipment (DCE). This terminology reflects
the RS-232 origin as a standard for communication between a computer terminal and a modem.

In this guide, your computer is considered a DTE, while peripheral devices such as modems and
printers are considered DCEs. Note that many scientific instruments function as DTEs.

Because RS-232 mainly involves connecting a DTE to a DCE, the pin assignment definitions specify
straight-through cabling, where pin 1 is connected to pin 1, pin 2 is connected to pin 2, and so on. A
DTE-to-DCE serial connection using the transmit data (TD) pin and the receive data (RD) pin is shown
below. Refer to “Serial Port Signals and Pin Assignments” on page 12-3 for more information about
serial port pins.

Computer Instrument
TD RD
Pin 3 »Pin 3
DTE DCE
Pin 2 |« Pin2
RD TD

If you connect two DTEs or two DCEs using a straight serial cable, then the TD pin on each device is
connected to the other, and the RD pin on each device is connected to the other. Therefore, to
connect two like devices, you must use a null modem cable. As shown below, null modem cables cross
the transmit and receive lines in the cable.

Computer Computer
TD TD
Fin 3 Pin 3
DTE >< DTE
Fin 2 |« »Pin2
RD RD

Note You can connect multiple RS-422 or RS-485 devices to a serial port. If you have an RS-232/
RS-485 adaptor, then you can use the serialport object with these devices.

Serial Port Signals and Pin Assignments

Serial ports consist of two signal types: data signals and control signals. To support these signal
types, as well as the signal ground, the RS-232 standard defines a 25-pin connection. However, most

12-3

12 Sserial Port 1/0

12-4

PCs and UNIX platforms use a 9-pin connection. In fact, only three pins are required for serial port
communications: one for receiving data, one for transmitting data, and one for the signal ground.

The following figure shows a pin assignment scheme for a nine-pin male connector on a DTE.

1 2 3 4 5
o o O O 0O
O O O O
6 7 8 9

This table describes the pins and signals associated with the nine-pin connector. Refer to the RS-232
or the RS-485 standard for a description of the signals and pin assignments for a 25-pin connector.

Serial Port Pin and Signal Assignments

Pin Label Signal Name Signal Type
1 CD Carrier Detect Control

2 RD Received Data Data

3 TD Transmitted Data Data

4 DTR Data Terminal Ready Control

5 GND Signal Ground Ground

6 DSR Data Set Ready Control

7 RTS Request to Send Control

8 CTS Clear to Send Control

9 RI Ring Indicator Control

The term “data set” is synonymous with “modem” or “device,” while the term “data terminal” is
synonymous with “computer.”

Note The serial port pin and signal assignments are with respect to the DTE. For example, data is
transmitted from the TD pin of the DTE to the RD pin of the DCE.

Signal States

Signals can be in either an active state or an inactive state. An active state corresponds to the binary
value 1, while an inactive state corresponds to the binary value 0. An active signal state is often
described as logic 1, on, true, or a mark. An inactive signal state is often described as logic 0, off,
false, or a space.

For data signals, the “on” state occurs when the received signal voltage is more negative than -3
volts, while the “off” state occurs for voltages more positive than 3 volts. For control signals, the “on”
state occurs when the received signal voltage is more positive than 3 volts, while the “off” state
occurs for voltages more negative than -3 volts. The voltage between -3 volts and +3 volts is
considered a transition region, and the signal state is undefined.

To bring the signal to the “on” state, the controlling device unasserts (or lowers) the value for data
pins and asserts (or raises) the value for control pins. Conversely, to bring the signal to the “off”
state, the controlling device asserts the value for data pins and unasserts the value for control pins.

Serial Port Overview

The following figure depicts the “on” and “off” states for a data signal and for a control signal.

Data Signal Control Signal

6 L
= off on
= 8 _ _ _ _ . _ _
=
Q
g — T — p—
s O0r _ L _ |
[
g
%ﬂ on off

8 L
Data Pins

Most serial port devices support full-duplex communication, meaning that they can send and receive
data at the same time. Therefore, separate pins are used for transmitting and receiving data. For
these devices, the TD, RD, and GND pins are used. However, some types of serial port devices
support only one-way or half-duplex communications. For these devices, only the TD and GND pins
are used. This guide assumes that a full-duplex serial port is connected to your device.

The TD pin carries data transmitted by a DTE to a DCE. The RD pin carries data that is received by a
DTE from a DCE.

Control Pins

The control pins of a nine-pin serial port are used to determine the presence of connected devices
and control the flow of data. The control pins include:

* “RTS and CTS Pins” on page 12-5

+ “DTR and DSR Pins” on page 12-6
* “CD and RI Pins” on page 12-6

RTS and CTS Pins

The RTS and CTS pins are used to signal whether the devices are ready to send or receive data. This
type of data flow control — called hardware handshaking — is used to prevent data loss during
transmission. When enabled for both the DTE and DCE, hardware handshaking using RTS and CTS
follows these steps:

1 The DTE asserts the RTS pin to instruct the DCE that it is ready to receive data.

2 The DCE asserts the CTS pin, indicating that it is clear to send data over the TD pin. If data can
no longer be sent, the CTS pin is unasserted.

3 The data is transmitted to the DTE over the TD pin. If data can no longer be accepted, the RTS
pin is unasserted by the DTE and the data transmission is stopped.

To enable hardware handshaking, refer to “Controlling the Flow of Data: Handshaking” on page 12-
24,

12-5

12 Sserial Port 1/0

12-6

DTR and DSR Pins

Many devices use the DSR and DTR pins to signal if they are connected and powered. Signaling the
presence of connected devices using DTR and DSR follows these steps:

1 The DTE asserts the DTR pin to request that the DCE connect to the communication line.
2 The DCE asserts the DSR pin to indicate that it is connected.
3 DCE unasserts the DSR pin when it is disconnected from the communication line.

The DTR and DSR pins were originally designed to provide an alternative method of hardware
handshaking. However, the RTS and CTS pins are usually used in this way, and not the DSR and DTR
pins. Refer to your device documentation to determine its specific pin behavior.

CD and Rl Pins

The CD and RI pins are typically used to indicate the presence of certain signals during modem-
modem connections.

CD is used by a modem to signal that it has made a connection with another modem, or has detected
a carrier tone. CD is asserted when the DCE is receiving a signal of a suitable frequency. CD is
unasserted if the DCE is not receiving a suitable signal.

RI is used to indicate the presence of an audible ringing signal. RI is asserted when the DCE is
receiving a ringing signal. RI is unasserted when the DCE is not receiving a ringing signal (for
example, it is between rings).

Serial Data Format

The serial data format includes one start bit, between five and eight data bits, and one stop bit. A
parity bit and an additional stop bit might be included in the format as well. This diagram illustrates
the serial data format.

| I | ‘ _l_l

Start bit Data bits Parity bit Stop bits
The format for serial port data is often expressed using the following notation:

number of data bits - parity type - number of stop bits

For example, 8-N-1 is interpreted as eight data bits, no parity bit, and one stop bit, while 7-E-2 is
interpreted as seven data bits, even parity, and two stop bits.

The data bits are often referred to as a character because these bits usually represent an ASCII
character. The remaining bits are called framing bits because they frame the data bits.

Bytes Versus Values

The collection of bits that compose the serial data format is called a byte. At first, this term might
seem inaccurate because a byte is 8 bits and the serial data format can range between 7 bits and 12
bits. However, when serial data is stored on your computer, the framing bits are stripped away, and

Serial Port Overview

only the data bits are retained. Moreover, eight data bits are always used regardless of the number of
data bits specified for transmission, with the unused bits assigned a value of 0.

When reading or writing data, you might need to specify a value, which can consist of one or more
bytes. For example, if you read one value from a device using the int32 format, then that value
consists of four bytes. For more information about reading and writing values, refer to “Write and
Read Serial Port Data” on page 12-17.

Synchronous and Asynchronous Communication

The RS-232 and the RS-485 standards support two types of communication protocols: synchronous
and asynchronous.

Using the synchronous protocol, all transmitted bits are synchronized to a common clock signal. The
two devices initially synchronize themselves to each other, and then continually send characters to
stay synchronized. Even when actual data is not really being sent, a constant flow of bits allows each
device to know where the other is at any given time. That is, each bit that is sent is either actual data
or an idle character. Synchronous communications allows faster data transfer rates than
asynchronous methods, because additional bits to mark the beginning and end of each data byte are
not required.

Using the asynchronous protocol, each device uses its own internal clock, resulting in bytes that are
transferred at arbitrary times. So, instead of using time as a way to synchronize the bits, the data
format is used.

In particular, the data transmission is synchronized using the start bit of the word, while one or more
stop bits indicate the end of the word. The requirement to send these additional bits causes
asynchronous communications to be slightly slower than synchronous. However, it has the advantage
that the processor does not have to deal with the additional idle characters. Most serial ports operate
asynchronously.

Note In this guide, the terms “synchronous” and “asynchronous” refer to whether read or write
operations block access to the MATLAB Command Window.

How Are the Bits Transmitted?

By definition, serial data is transmitted one bit at a time. The order in which the bits are transmitted
follows these steps:

1 The start bit is transmitted with a value of 0.

2 The data bits are transmitted. The first data bit corresponds to the least significant bit (LSB),
while the last data bit corresponds to the most significant bit (MSB).

3 The parity bit (if defined) is transmitted.

4 One or two stop bits are transmitted, each with a value of 1.

The number of bits transferred per second is given by the baud rate. The transferred bits include the
start bit, the data bits, the parity bit (if defined), and the stop bits.

Start and Stop Bits

As described in “Synchronous and Asynchronous Communication” on page 12-7, most serial ports
operate asynchronously. This means that the transmitted byte must be identified by start and stop
bits. The start bit indicates when the data byte is about to begin and the stop bit indicates when the

12-7

12 Sserial Port 1/0

12-8

data byte has been transferred. The process of identifying bytes with the serial data format follows
these steps:

1 When a serial port pin is idle (not transmitting data), then it is in an “on” state.

2 When data is about to be transmitted, the serial port pin switches to an “off” state due to the
start bit.

3 The serial port pin switches back to an “on” state due to the stop bit(s). This indicates the end of
the byte.

Data Bits

The data bits transferred through a serial port can represent device commands, sensor readings,
error messages, and so on. The data can be transferred as either binary data or as text (ASCII) data.

Most serial ports use between five and eight data bits. Binary data is typically transmitted as eight
bits. Text-based data is transmitted as either seven bits or eight bits. If the data is based on the ASCII
character set, then a minimum of seven bits is required because there are 27 or 128 distinct
characters. If an eighth bit is used, it must have a value of 0. If the data is based on the extended
ASCII character set, then eight bits must be used because there are 28 or 256 distinct characters.

Parity Bit

The parity bit provides simple error (parity) checking for the transmitted data. This table describes
the types of parity checking.

Parity Types

Parity Type Description

Even The data bits plus the parity bit produce an even number of 1s.
Mark The parity bit is always 1.

Odd The data bits plus the parity bit produce an odd number of 1s.
Space The parity bit is always 0.

Mark and space parity checking are seldom used because they offer minimal error detection. You can
choose not to use parity checking at all.

The parity checking process follows these steps:

1 The transmitting device sets the parity bit to 0 or to 1 depending on the data bit values and the
type of parity checking selected.

2 The receiving device checks if the parity bit is consistent with the transmitted data. If it is, then
the data bits are accepted. If it is not, then an error is returned.

Note Parity checking can detect only one-bit errors. Multiple-bit errors can appear as valid data.

For example, suppose the data bits 01110001 are transmitted to your computer. If even parity is
selected, then the parity bit is set to 0 by the transmitting device to produce an even number of 1s. If
odd parity is selected, then the parity bit is set to 1 by the transmitting device to produce an odd
number of 1s.

Serial Port Overview

Find Serial Port Information for Your Platform

You can find serial port information using the resources provided by Windows and UNIX platforms.

Note Your operating system provides default values for all serial port settings. However, these
settings are overridden by your MATLAB code, and have no effect on your serial port application.

Use the serialportlist Function to Find Available Ports

The serialportlist function returns a list of all serial ports on a system, including virtual serial
ports provided by USB-to-serial devices and Bluetooth Serial Port Profile devices. The function
provides a list of the serial ports that you have access to on your computer and can use for serial port
communication. For example:

serialportlist
ans =
1x3 string array

“COoM1" "COM3" "“com4"

Note The serialportlist function shows both available and in-use ports on Windows and macOS
systems, but on Linux, it shows only available ports and not in-use ports.

Windows Platform
You can access serial port information through the Device Manager.

1 Open Device Manager.
2 Expand the Ports (COM & LPT) list.

12-9

12 Sserial Port 110

& Device Manager
File Action View Help

| m|E He B

b LR
» | Audio inputs and outputs
O Computer
= DMsk drives
5§l Display adapters
o DVDyCD-ROM drives
‘ Firrnware
b Human Interface Devices
== [DE ATASATAPI controllers
o Imaging devices
» E2 Keyboards
5 ' Mice and other painting devices
» [Monitors
v [P Metwork adapters
w ﬁ Ports (COM & LPT)
i Arduing Uno (COR)
@ Communications Port (CORMT)
i@ Intel{R) Active Management Technology - SOL (COM3)
= Primt queues
1 Processors
B Security devices
B Software devices
i Sound, video and game controllers
S Storage controllers
i3 Systern devices

5 : E
| linivercal Serial Bos ranbonllees

W W W W

WOW W W

A T T T T

3 Double-click the Communications Port (COM1) item.
4 Select the Port Settings tab.

12-10

Serial Port Overview

Communications Port (COM1T) Properties

General FPort Settings Driver Details Events Resources

Bits per second: | 9600
Data bits: | 8
Party: | None
Stop bits: |1

Flow contral: | Mone

Advanced... Restore Defaults

Cancel

UNIX Platform

To find serial port information for UNIX platforms, you need to know the serial port names. These

names can vary between different operating systems.

On Linugx, serial port devices are typically named ttyS0, ttyS1, and so on. You can use the
setserial command to display or configure serial port information. For example, to display which

serial ports are available:
setserial -bg /dev/ttyS*

/dev/ttyS0O at Ox03f8 (irq
/dev/ttyS1 at 0x02f8 (irq

4) is a 16550A
3) is a 16550A

To display detailed information about ttySo:
setserial -ag /dev/ttySO

/dev/ttySO, Line 0, UART: 16550A, Port: 0x03f8, IRQ:
Baud base: 115200, close delay: 50, divisor:

closing wait: 3000, closing wait2: infinte
Flags: spd normal skip test session lockout

4
0

Note If the setserial -ag command does not work, make sure that you have read and write

permission for the port.

12-11

12 Sserial Port 1/0

For all supported UNIX platforms, including macOS, you can use the stty command to display or
configure serial port information. For example, to display serial port properties for ttyS0, type:

stty -a < /dev/ttySO
To configure the baud rate as 4800 bits per second, type:
stty speed 4800 < /dev/ttySO > /dev/ttySoO

Note This example shows how to set tty parameters, not the baud rate. To set the baud rate using
the MATLAB serial interface, refer to “Configure Serial Port Communication Settings” on page 12-
15.

12-12

Create Serial Port Object

Create Serial Port Object

In this section...

“Create a Serial Port Object” on page 12-13

“Serial Port Object Display” on page 12-13

Create a Serial Port Object

You create a serial port object with the serialport function. serialport requires the name of the
serial port connected to your device and the baud rate as input arguments. You can also configure
property values during object creation using name-value pair arguments.

Each serial port object is associated with one serial port. For example, connect to a device that is on
serial port COM1 and configured for a baud rate of 4800.

s = serialport("COM1",4800);

If the specified port does not exist, or if it is in use, you cannot connect the serial port object to the
device. The port name depends on the platform that the serial port is on.

You can also use the serialportlist function to return a list of all serial ports on a system,
including virtual serial ports provided by USB-to-serial devices and Bluetooth® Serial Port Profile
devices. The list shows all serial ports that you have access to on your computer and can use for
serial port communication.

serialportlist
ans =
1x3 string array
"CcoM1" "CcoM3" "com4"

This table shows an example of serial constructors on different platforms.

Platform Serial Constructor

Linux 64-bit s = serialport("/dev/ttyS0",9600);

macOS 64-bit s = serialport("/dev/tty.KeySeriall",9600);
Microsoft Windows 64-bit s = serialport("COM1",69600);

Note The first time you try to access a serial port in MATLAB using the s =
serialport("COM1",9600) call, make sure that the port is free and is not already open in any
other application. If the port is open in another application, MATLAB cannot access it. After you
access the serial port in MATLAB, you can open the same port in other applications, and MATLAB
continues to use it along with any other application that has it open as well.

Serial Port Object Display

The serial port object provides a convenient display that summarizes important configuration and
state information. You can invoke the display summary in three ways:

12-13

12

Serial Port 1/0

* Type the serial port object variable name at the command line.
* Exclude the semicolon when creating a serial port object.
* Exclude the semicolon when configuring properties using dot notation.

You can also display summary information using the workspace browser by right-clicking an
instrument object and selecting Display Summary from the context menu.

The display summary for the serial port object s on a Windows machine is given here.

S serialport("COM4",9600)
S =
Serialport with properties:

Port: "COM4"
BaudRate: 9600

12-14

NumBytesAvailable: 0

Show all properties, all methods

Port: "COM4"
BaudRate: 9600
NumBytesAvailable: 0
ByteOrder: "little-endian”
DataBits: 8
StopBits: 1
Parity: "none"
FlowControl: "none"
Timeout: 10
Terminator: "LF"
BytesAvailableFcnMode: "off"
BytesAvailableFcnCount: 64
BytesAvailableFcn: []
NumBytesWritten: 0

ErrorOccurredFcn:
UserData:

]

[
[]

Use dot notation to configure and display property values.

s.BaudRate =
s.BaudRate

4800;

ans =

4800

For more information about configuring these properties, see serialport.

Configure Serial Port Communication Settings

Configure Serial Port Communication Settings

Before you can write or read data, both the serial port object and the instrument must have identical
communication settings. Configuring serial port communications involves specifying values for
properties that control the baud rate and the “Serial Data Format” on page 12-6. These properties are
as follows.

Serial Port Communication Properties

Property Name Description

BaudRate Specify the rate at which bits are transmitted.

Parity Specify the type of parity checking.

DataBits Specify the number of data bits to transmit.

StopBits Specify the number of bits used to indicate the end of a byte.
Terminator Specify the terminator character.

Caution If the serial port object and the instrument communication settings are not identical, you
might not be able to successfully read or write data.

Refer to your instrument documentation for an explanation of its supported communication settings.

You can display the communication property values for the serial port object s created in “Create
Serial Port Object” on page 12-13.

s serialport("COM4",9600)

S =
Serialport with properties:

Port: "COM4"
BaudRate: 9600
NumBytesAvailable: 0

Show all properties, all methods

Port: "COM4"
BaudRate: 9600
NumBytesAvailable: 0

ByteOrder: "little-endian"
DataBits: 8
StopBits: 1
Parity: "none"
FlowControl: "none"
Timeout: 10
Terminator: "LF"

BytesAvailableFcnMode: "off"
BytesAvailableFcnCount: 64
BytesAvailableFcn: []
NumBytesWritten: 0

12-15

12 Sserial Port 110

]
]

ErrorOccurredFcn:
UserData:

[
[

12-16

Write and Read Serial Port Data

Write and Read Serial Port Data

In this section...

“Rules for Completing Write and Read Operations” on page 12-17
“Writing and Reading Text Data” on page 12-17

“Writing and Reading Binary Data” on page 12-19

Rules for Completing Write and Read Operations

Completing Write Operations
A write operation using write or writeline completes when one of these conditions is satisfied:

* The specified data is written.

* The time specified by the Timeout property passes.

A text command is processed by the instrument only when it receives the required terminator. For
serial port objects, each occurrence of \n in the ASCII command is replaced with the Terminator

property value. The default value of Terminator is the line feed character. Refer to the
documentation for your instrument to determine the terminator required by your instrument.

Completing Read Operations
A read operation with read or readline completes when one of these conditions is satisfied:

» The specified number of values is read.
* The time specified by the Timeout property passes.
* The terminator specified by the Terminator property is read.

Writing and Reading Text Data

This example illustrates how to communicate with a serial port instrument by writing and reading
text data.

The instrument is a Tektronix® TDS 210 two-channel oscilloscope connected to the serial port COM1.
Therefore, many of the commands in the example are specific to this instrument. A sine wave is input
into channel 2 of the oscilloscope, and you want to measure the peak-to-peak voltage of the input
signal.

These functions and properties are used when reading and writing text.

Function Purpose

readline Read text data from the instrument.

writeline Write text data to the instrument.

“Terminator” Character used to terminate commands sent to the instrument.

Note This example is Windows specific.

12-17

12 Sserial Port 1/0

12-18

Create a serial port object — Create the serial port object s associated with the serial port
COM1.

s = serialport("COM1",9600);
Write and read data — Write the *IDN? command to the instrument using writeline, and
then read back the result of the command using readline.

writeline(s, "*IDN?")
s.NumBytesAvailable

ans =
56
idn = readline(s)
idn =
"TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1l.16 TDS2CM:CMV:v1.04"

You need to determine the measurement source. Possible measurement sources include channel
1 and channel 2 of the oscilloscope.

writeline(s, "MEASUREMENT : IMMED:SOURCE?")
source = readline(s)

source =
IICHlII

The scope is configured to return a measurement from channel 1. Because the input signal is
connected to channel 2, you must configure the instrument to return a measurement from this
channel.

writeline(s, "MEASUREMENT : IMMED:SOURCE CH2")
writeline(s, "MEASUREMENT : IMMED:SOURCE?")
source = readline(s)

source =
n CH2 n

You can now configure the scope to return the peak-to-peak voltage, and then request the value
of this measurement.

writeline(s, "MEASUREMENT:MEAS1:TYPE PK2PK")
writeline(s, "MEASUREMENT:MEAS1:VALUE?")

Read back the result using the readline function.
ptop = readline(s)
ptop =

“2.0199999809E0"
Disconnect and clean up — Clear the serial port object s from the MATLAB workspace when
you are done working with it.

clear s

Write and Read Serial Port Data

Writing and Reading Binary Data

This example explores binary read and write operations with a serial port object. The instrument used
is a Tektronix® TDS 210 oscilloscope.

Functions and Properties

These functions are used when reading and writing binary data.

Function Purpose
read Read binary data from the instrument.
write Write binary data to the instrument.

Configure and Connect to the Serial Object

You need to create a serial object. In this example, create a serial port object associated with the
COM1 port.

s = serialport("COM1",9600);
Write Binary Data

You use the write function to write binary data to the instrument. A binary write operation
completes when one of these conditions is satisfied:

» All the data is written.
* A timeout occurs as specified by the Timeout property.

Note When you perform a write operation, think of the transmitted data in terms of values rather
than bytes. A value consists of one or more bytes. For example, one uint32 value consists of four
bytes.

Writing Int16 Binary Data

Write a waveform as an int16 array.

write(s,"Data:Destination RefB","string");
write(s,"Data:Encdg SRPbinary","string");
write(s,"Data:Width 2","string");
write(s,"Data:Start 1","string");

t = (0:499) .* 8 * pi / 500;

0:
data = round(sin(t) * 90 + 127);
write(s, "CURVE #3500","string");

Note that one int16 value consists of two bytes. Therefore, the following command writes 1000
bytes.

write(s,data,"int1l6")
Reading Binary Data

You use the read function to read binary data from the instrument. A binary read operation
completes when one of these conditions is satisfied:

12-19

12 Sserial Port 1/0

* A timeout occurs as specified by the Timeout property.
* The specified number of values is read.

Note When you perform a read operation, think of the received data in terms of values rather than
bytes. A value consists of one or more bytes. For example, one uint32 value consists of four bytes.

Reading int16 Binary Data

Read the same waveform on channel 1 as an int16 array.

read
read
read
read
read
read

s,"Data:Source CH1","string");
s,"Data:Encdg SRPbinary","string");
s,"Data:Width 2","string");
s,"Data:Start 1","string");
s,"Data:Stop 2500","string");
s,"Curve?","string")

—~ e~~~ o~ —~

Note that one int16 value consists of two bytes. Therefore, the following command reads 512 bytes.
data = read(s,256,"intl6");
Disconnect and Clean Up

If you are finished with the serial port object, clear the object from the workspace.

clear s

12-20

Use Callbacks for Serial Port Communication

Use Callbacks for Serial Port Communication

In this section...

“Callback Properties” on page 12-21
“Using Callbacks” on page 12-21

Callback Properties

The properties and functions associated with callbacks are as follows.

Property or Function Purpose

NumBytesAvailable Number of bytes available to read
BytesAvailableFcn Bytes available callback function
BytesAvailableFcnCount Number of bytes of data to trigger callback
BytesAvailableFcnMode Bytes available callback trigger mode
configureCallback Set serial port callback function and trigger

Using Callbacks

This example uses a loopback device with the callback function readSerialData to return data to
the command line when a terminator is read.

Note This example is Windows specific.

1 Create the callback function — Define a callback function readSerialData that performs a
terminated string read and returns the data.

function readSerialData(src,~)
data = readline(src);
disp(data);
end
2 Create an instrument object — Create the serial port object s associated with serial port

COML1.

s = serialport("COM1",9600);
3 Configure properties — Configure s to execute the callback function readSerialData when
the terminator is read.

configureCallback(s,"terminator",@readSerialData)
4 Disconnect and clean up — Clear the objects from the MATLAB workspace when you are done.

clear s

12-21

12 Sserial Port 1/0

Use Serial Port Control Pins

12-22

In this section...

“Control Pins” on page 12-22
“Signaling the Presence of Connected Devices” on page 12-22

“Controlling the Flow of Data: Handshaking” on page 12-24

Control Pins

As described in “Serial Port Signals and Pin Assignments” on page 12-3, nine-pin serial ports include
six control pins. The functions and properties associated with the serial port control pins are as
follows.

Function Purpose

getpinstatus Get serial pin status.

setRTS Specify the state of the RTS pin.

setDTR Specify the state of the DTR pin.
FlowControl Specify the data flow control method to use.

Signaling the Presence of Connected Devices

DTEs and DCEs often use the CD, DSR, RI, and DTR pins to indicate whether a connection is
established between serial port devices. Once the connection is established, you can begin to write or

read data.

You can monitor the state of the CD, DSR, and RI pins with the getpinstatus function. You can
specify the state of the DTR pin with the setDTR function.

The following example illustrates how these pins are used when two modems are connected to each
other.

Connect Two Modems

This example (shown on a Windows machine) connects two modems to each other through the same
computer, and illustrates how you can monitor the communication status for the computer-modem
connections, and for the modem-modem connection. The first modem is connected to COM1, while
the second modem is connected to COM2.

1 Connect to the instruments — After the modems are powered on, the serial port object s1 is
created for the first modem, and the serial port object s2 is created for the second modem. both
modems are configured for a baud rate of 9600 bits per second.

sl
s2

serialport("COM1",9600);
serialport("COM2",9600);

You can verify that the modems (data sets) are ready to communicate with the computer by
examining the value of the Data Set Ready pin using the getpinstatus function.

getpinstatus(s)

Use Serial Port Control Pins

ans =
struct with fields:

ClearToSend:
DataSetReady:
CarrierDetect:
RingIndicator:

[oNoN N

The value of the DataSetReady field is 1, or true, because both modems were powered on
before they were connected to the objects.

Configure properties — Both modems are configured for a carriage return (CR) terminator
using the configureTerminator function.

configureTerminator(sl, "CR")

configureTerminator(s2,"CR")

Write and read data — Write the atd command to the first modem using the writeline
function. This command puts the modem “off the hook,” and is equivalent to manually lifting a
phone receiver.

writeline(sl, 'atd"')

Write the ata command to the second modem using the writeline function. This command
puts the modem in “answer mode,” which forces it to connect to the first modem.

writeline(s2, 'ata')

After the two modems negotiate their connection, you can verify the connection status by
examining the value of the Carrier Detect pin using the getpinstatus function.

getpinstatus(s)
ans =
struct with fields:

ClearToSend: 1
DataSetReady: 1
CarrierDetect: 1
RingIndicator: 0

You can also verify the modem-modem connection by reading the descriptive message returned
by the second modem.

s2.NumBytesAvailable
ans =
25
out = read(s2,25,"uint32")

out =
ata
CONNECT 2400/NONE

Now break the connection between the two modems by using the setDTR function. You can
verify that the modems are disconnected by examining the Carrier Detect pin value using the
getpinstatus function.

12-23

12 Sserial Port 1/0

12-24

setDTR(s1, false)
getpinstatus(sl)

ans =
struct with fields:

ClearToSend:
DataSetReady:
CarrierDetect:
RingIndicator:

4 Disconnect and clean up — Clear the objects from the MATLAB workspace when you are done.

[N i

clear sl s2

Controlling the Flow of Data: Handshaking

Data flow control or handshaking is a method used for communicating between a DCE and a DTE to
prevent data loss during transmission. For example, suppose your computer can receive only a
limited amount of data before it must be processed. As this limit is reached, a handshaking signal is
transmitted to the DCE to stop sending data. When the computer can accept more data, another
handshaking signal is transmitted to the DCE to resume sending data.

If supported by your device, you can control data flow using one of these methods:

* “Hardware Handshaking” on page 12-24
+ “Software Handshaking” on page 12-25

Note Although you might be able to configure your device for both hardware handshaking and
software handshaking at the same time, MATLAB does not support this behavior.

You can specify the data flow control method with the FlowControl property. If FlowControl is
hardware, then hardware handshaking is used to control data flow. If FlowControl is software,
then software handshaking is used to control data flow. If FlowControl is none, then no
handshaking is used.

Hardware Handshaking

Hardware handshaking uses specific serial port pins to control data flow. In most cases, these are the
RTS and CTS pins. Hardware handshaking using these pins is described in “RTS and CTS Pins” on
page 12-5.

If FlowControl is hardware, then the RTS and CTS pins are automatically managed by the DTE and
DCE. You can return the CTS pin value with the getpinstatus function. You can configure the RTS
pin value with the setRTS function.

Note Some devices also use the DTR and DSR pins for handshaking. However, these pins are
typically used to indicate that the system is ready for communication, and are not used to control
data transmission. In MATLAB, hardware handshaking always uses the RTS and CTS pins.

If your device does not use hardware handshaking in the standard way, then you might need to
manually configure the RTS pin using the setRTS function. In this case, configure FlowControl to

Use Serial Port Control Pins

none. If FlowControl is hardware, then the RTS value that you specify might not be honored. Refer
to the device documentation to determine its specific pin behavior.

Software Handshaking

Software handshaking uses specific ASCII characters to control data flow. The following table
describes these characters, known as Xon and Xoff (or XON and XOFF).

Software Handshaking Characters

Character Integer Value Description
Xon 17 Resume data transmission.
Xoff 19 Pause data transmission.

When you use software handshaking, the control characters are sent over the transmission line the
same way as regular data. Therefore, you need only the TD, RD, and GND pins.

The main disadvantage of software handshaking is that you cannot write the Xon or Xoff characters
while numerical data is being written to the instrument. This is because numerical data might contain
a 17 or 19, which makes it impossible to distinguish between the control characters and the data.
However, you can write Xon or Xoff while data is being asynchronously read from the instrument
because you are using both the TD and RD pins.

Using Software Handshaking

Suppose you want to use software flow control in conjunction with your serial port application. To do
this, you must configure the instrument and the serial port object for software flow control. For a
serial port object s connected to a Tektronix TDS 210 oscilloscope, this configuration is accomplished
with the following commands.

writeline(s,"RS232:SOFTF ON")
s.FlowControl = "software";

To pause data transfer, you write the numerical value 19 (Xoff) to the instrument.
write(s,19,"uint32");
To resume data transfer, you write the numerical value 17 (Xon) to the instrument.

write(s,17,"uint32");

12-25

12 Sserial Port 1/0

Transition Your Code to serialport Interface

12-26

The serial function, its object functions, and its properties will be removed. Use serialport

instead.

serial Interface serialport Interface Example

seriallist serialportlist “Discover Serial Port Devices”
on page 12-27

serial and fopen serialport “Connect to Serial Port Device”
on page 12-27

fwrite write “Read and Write” on page 12-

fread read 27

fprintf writeline “Send a Command” on page 12-
28

fscanf readline “Read a Terminated String” on

fgetl page 12-28

fgets

flushinput and flushoutput|flush “Flush Data from Memory” on
page 12-29

Terminator configureTerminator “Set Terminator” on page 12-

30

BytesAvailableFcnCount,

configureCallback and

“Set Up a Callback Function” on

BytesAvailableFcnMode, NumBytesAvailable page 12-30
BytesAvailableFcn, and

BytesAvailable

PinStatus getpinstatus “Read Serial Pin Status” on

page 12-30

DataTerminalReady and
RequestToSend

setDTR and setRTS

“Set Serial DTR and RTS Pin
States” on page 12-31

ErrorFcn

ErrorOccurredFcn

Removed Functionality

The ValuesReceived and ValuesSent properties will be removed. You can calculate the number of
values sent using the NumBytesAvailable property and the data type of the data available. For
example, if the NumBytesAvailable is 20 bytes of uint32 data, the number of values sent is five
since each uint32 value is four bytes.

The readasync and stopasync functions and the ReadAsyncMode and TransferStatus
properties will be removed. The updated interface reads data asynchronously.

The BytesToOutput, InputBufferSize, and QOutputBufferSize properties will be removed.
Buffer sizes are automatically managed and sized as needed.

The BreakInterruptFcn, OutputEmptyFcn, and PinStatusFcn properties will be removed. You
can set callback functions using configureCallback in the updated interface, but not for these

properties.

Transition Your Code to serialport Interface

The RecordDetail, RecordMode, RecordName, and RecordStatus properties will be removed.
The TimerFcn and TimerPeriod properties will be removed. Use timer instead.

The Name, Type, ObjectVisibility, Status, and Tag properties will be removed.

Discover Serial Port Devices

seriallist will be removed. Use serialportlist instead.

Connect to Serial Port Device

This example shows how to connect to a serial port device and disconnect from it using the
recommended functionality.

Functionality Use This Instead

s = serial ("COM1"); s = serialport("COM1",115200);
s.BaudRate = 115200;
fopen(s)

fclose(s) clear s
delete(s)
clear s

The fopen function is not available in the updated interface. The object creation function
serialport both creates the object and connects the object to the device.

The fclose function is not available in the updated interface. The clear function disconnects the
object from the device when it removes the object from the workspace.

For more information, see serialport.

Read and Write

These examples use a loopback device to show how to perform a binary write and read, write a
nonterminated command string, and read a fixed-length response string using the recommended
functionality.

Functionality Use This Instead
% s is a serial object % s is a serialport object
fwrite(s,1:5,"uint32") write(s,1:5,"uint32")
data = fread(s,5,"uint32") data = read(s,5,"uint32")
data = data =
1 1 2 3 4 5
2
3
4
5

12-27

12 Sserial Port 1/0

12-28

Functionality Use This Instead
% s 1s a serial object % s 1s a serialport object
command = "start"; command = "start";

fwrite(s, command, "char")

write(s,command, "char")

[}

% s 1is a serialport object
command = "start";
write(s,command,"string")

% s is a serial object
length = 5;
resp = fread(s,length, "char")

resp =

115
116

97
114
116

resp = char(resp)'

resp =

'start'

% s is a serialport object
length = 5;
resp = read(s,length,"string")

resp =

"start"

For more information, see write or read.

Send a Command

This example shows how to write a terminated SCPI command using the recommended functionality.

Functionality

Use This Instead

% s is a serial object
s.Terminator = "CR/LF"
channel = 1;
level = 3.44;
fprintf (s, "TRIGGER%d:LEVEL2 %1.2f", [channel

% s is a serialport object
configureTerminator(s, "CR/LF")
channel = 1;

level = 3.44;

chdvel printf ("TRIGGERSd:LEVEL2 %1.2f", [chd
writeline(s,cmd)

writeline automatically appends the write

terminator.

For more information, see configureTerminator orwriteline.

Read a Terminated String

This example shows how to perform a terminated string read using the recommended functionality.

nnel, level

Transition Your Code to serialport Interface

Functionality Use This Instead
% s 1s a serial object % s 1s a serialport object
fprintf (s, "MEASUREMENT:IMMED:TYPE PK2PK") |writeline(s,"MEASUREMENT:IMMED:TYPE PK2PK"
a = fscanf(s,"%e",06) a = readline(s)
a = a =
2.0200 "2.0200"

For the format specifier "%e", fscanf returns sscanf(a, "se")
the terminator and the user must remove it from

the string. gl
2.0200

% s 1s a serial object % s 1s a serialport object
fprintf(s,"*IDN?") writeline(s, "*IDN?")
a = fgetl(s) a = readline(s)
a = a =

'"TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.1q4' "TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1l.1q TDS2CM:CM
fgetl reads until the specified terminator is readline reads until the specified terminator is
reached and then discards the terminator. reached and then discards the terminator. There

% s is a serial object is no option to include the terminator.

fprintf(s,"*IDN?")
a = fgets(s)

'TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.1q TDS2CM:CMV:v1.04

fgets reads until the specified terminator is
reached and then returns the terminator.

For more information, see readline.

Flush Data from Memory

This example shows how to flush data from the buffer using the recommended functionality.

Functionality Use This Instead

% s is a serial object % s 1is a serialport object
flushinput(s) flush(s,"input")

% s is a serial object % s is a serialport object
flushoutput(s) flush(s, "output")

% s 1s a serial object % s 1s a serialport object
flushinput(s) flush(s)

flushoutput(s)

12-29

12 Sserial Port 1/0

For more information, see flush.

Set Terminator

This example shows how to set the terminator using the recommended functionality.

Functionality Use This Instead

% s 1s a serial object % s 1s a serialport object
s.Terminator = "CR/LF"; configureTerminator(s, "CR/LF")

% s is a serial object % S is a serialport object
s.Terminator = {"CR/LF" [10]}; configureTerminator(s,"CR/LF",10)

For more information, see configureTerminator.

Set Up a Callback Function

This example uses a loopback device to show how to set up a callback function using the
recommended functionality.

Functionality Use This Instead
s = serial ("COM5", "BaudRate",115200) s = serialport("COM5",115200)
s.BytesAvailableFcnCount = 5 configureCallback(s, "byte",5,@instrcallbachk);
s.BytesAvailableFcnMode = "byte"
s.BytesAvailableFcn = @instrcallback function instrcallback(src,evt)
data = read(src,src.NumBytesAvailable,"yint8")

fopen(s) disp(evt)

end

function instrcallback(src,evt)
data = fread(src,src.BytesAvailable)

disp(evt) data =
disp(evt.Data)
end 1 2 3 4 5
DataAvailableInfo with properties:
data =
BytesAvailableFcnCount: 5
1 AbsTime: 02-May-2019 15:54:09
2
3
4
5

Type: 'BytesAvailable'’
Data: [1x1 struct]

AbsTime: [2019 5 2 16 35 9.6710]

For more information, see configureCallback

Read Serial Pin Status

This example shows how to read serial pin status using the recommended functionality.

12-30

Transition Your Code to serialport Interface

Functionality

Use This Instead

% s 1s a serial object
s.PinStatus

ans =
struct with fields:

CarrierDetect: 'on'

ClearToSend: 'on'

DataSetReady: 'on'
RingIndicator: 'on'

% s 1s a serialport object
status = getpinstatus(s)

status
struct with fields:

ClearToSend:
DataSetReady:
CarrierDetect:
RingIndicator:

e

For more information, see getpinstatus.

Set Serial DTR and RTS Pin States

This example shows how to set serial DTR and RTS pin states using the recommended functionality.

Functionality Use This Instead

% s 1s a serial object % s 1s a serialport object
s.DataTerminalReady = "on"; setDTR(s, true)

% s is a serial object % s is a serialport object
s.RequestToSend = "off"; setRTS(s, false)

For more information, see setDTR or setRTS.

See Also
serialportlist | serialport

More About

. serial Properties
. R2019a serial Interface Topics

12-31

https://www.mathworks.com/help/releases/R2019a/matlab/serial-port-devices.html

12 Sserial Port 1/0

Read Streaming Data from Arduino Using Serial Port
Communication

This example shows how to enable callbacks to read streaming ASCII terminated data from an
Arduino® Due using the serialport interface.

Load Program on the Arduino
Plug in an Arduino Due to your computer.

Load the following program on the Arduino Due using the Arduino IDE. This program writes out
continuous points of a sine wave, followed by the "Carriage Return" and "Linefeed" terminators.

/*
SineWavePoints

Write sine wave points to the serial port, followed by the Carriage Return and LineFeed termina
*/

int i = 0;

// The setup routine runs once when you press reset:

void setup() {
// Initialize serial communication at 9600 bits per second:
Serial.begin(9600);

}

// The loop routine runs over and over again forever:
void loop() {
// Write the sinewave points, followed by the terminator "Carriage Return" and "Linefeed".
Serial.print(sin(i*50.0/360.0));
Serial.write(13);
Serial.write(10);
i+=1;

}

Establish a Connection to the Arduino

Create a serialport instance to connect to your Arduino Due.

Find the serial port that the Arduino is connected to. You can identify the port from the Arduino IDE.

serialportlist("available")"

ans = 3x1 string
“com1"
“COM3"
“COM13"

Connect to the Arduino Due by creating a serialport object using the port and baud rate specified
in the Arduino code.

arduinoObj

serialport("COM13",9600)

arduinoObj =
Serialport with properties

12-32

Read Streaming Data from Arduino Using Serial Port Communication

Port: "COM13"
BaudRate: 9600
NumBytesAvailable: 0
NumBytesWritten: 0

Show all properties

Prepare the serialport Object to Start Streaming Data
Configure the serialport object by clearing old data and configuring its properties.

Set the Terminator property to match the terminator that you specified in the Arduino code.

configureTerminator(arduinoObj,"CR/LF");

Flush the serialport object to remove any old data.

flush(arduinoObj);

Prepare the UserData property to store the Arduino data. The Data field of the struct saves the sine
wave value and the Count field saves the x-axis value of the sine wave.

arduinoObj.UserData = struct("Data",[],"Count",1)

arduinoObj =
Serialport with properties

Port: "COM13"
BaudRate: 9600
NumBytesAvailable: 10626
NumBytesWritten: 0

Show all properties

Create a callback function readSineWaveData that reads the first 1000 ASCII terminated sine wave
data points and plots the result.

function readSineWaveData(src, ~)

% Read the ASCII data from the serialport object.
data = readline(src);

% Convert the string data to numeric type and save it in the UserData
% property of the serialport object.
src.UserData.Data(end+1) = str2double(data);

% Update the Count value of the serialport object.
src.UserData.Count = src.UserData.Count + 1;

% If 1001 data points have been collected from the Arduino, switch off the
callbacks and plot the data.
if src.UserData.Count > 1001

configureCallback(src, "off");

plot(src.UserData.Data(2:end));

o°

end
end

12-33

12 Sserial Port 1/0

Set the BytesAvailableFcnMode property to "terminator" and the BytesAvailableFcn
property to @readSineWaveData. The callback function readSineWaveData is triggered when a
new sine wave data (with the terminator) is available to be read from the Arduino.

configureCallback(arduinoObj,"terminator",@readSineWaveData);

The callback function opens the MATLAB® figure window with a plot of the first 1000 sine wave data
points.

12-34

Troubleshooting Serial Port Interface

Troubleshooting Serial Port Interface

Serial communication is a low-level protocol for communicating between two or more devices.
Normally, one device is a computer, and the other device can be another computer, modem, printer, or
scientific instrument such as an oscilloscope or a function generator.

The serial port sends and receives bytes of information in a serial fashion — 1 bit at a time. These
bytes are transmitted using either a binary format or a text (ASCII) format.

For many serial port applications, you can communicate with your instrument without detailed
knowledge of how the serial port works. Communication is established through a serial port object,
which you create in the MATLAB workspace.

Issue

If you are having trouble connecting to or communicating with your serial port device, follow these
troubleshooting steps.

Possible Solutions
Supported Platforms

The serial port interface is supported on these platforms:

* Linux 64-bit
* macOS 64-bit
* Microsoft Windows 64-bit

The serial port interface is supported on the same platforms as MATLAB. For updates to the list of
currently supported platforms, see System Requirements for MATLAB.

Adaptor Requirements

Use RS-232 interface standard with the serial port communication. Over the years, several serial port
interface standards for connecting computers to peripheral devices have been developed. These
standards include RS-232, RS-422, and RS-485 — all of which are supported by the serial port object.
Of these, the most widely used standard is RS-232, which stands for Recommended Standard number
232.

You need to connect the two devices with a serial cable. For more information, see “Connecting Two
Devices with a Serial Cable” on page 12-3.

Serial ports consist of two signal types: data signals and control signals. To support these signal
types, as well as the signal ground, the RS-232 standard defines a 25-pin connection. However, most
PCs and UNIX platforms use a 9-pin connection. In fact, only three pins are required for serial port
communications: one for receiving data, one for transmitting data, and one for the signal ground. For
more information, see “Serial Port Signals and Pin Assignments” on page 12-3.

Configuration and Connection

1 Make sure that you have the correct instrument driver installed for your device. Refer to your
device documentation and the vendor website.

12-35

https://www.mathworks.com/support/requirements/matlab-system-requirements.html

12 Sserial Port 1/0

12-36

2 Make sure that your device is supported in Instrument Control Toolbox™. See “Is My Hardware
Supported?” (Instrument Control Toolbox).

3 Make sure that Instrument Control Toolbox recognizes your serial ports, by using the
serialportlist function. For example, if your computer has more than one serial port, your
output would look like this:

serialportlist
ans =
1x3 string array

"COM1" “COM3" “CcoM4"

Tip You can also use Windows device manager to see a list of available serial ports.

4 Make sure you can create your serial port object. You must provide two arguments to create the
object. For example, create a serial object called s using port COM1 and baud rate 9600.

s = serialport("COM1",9600);

If you do not get an error, the object was created successfully.

5 When you have connected, you can communicate with your device. If you have problems sending
or receiving, you may need to configure communication settings such as BaudRate, DataBits,
Parity, StopBits, or Terminator. Make sure you configure these communication parameters
to match those of the connected device.

See “Writing and Reading Text Data” on page 12-17 and “Writing and Reading Binary Data” on
page 12-19 for communication examples.

Other Troubleshooting Tips for Serial Port
Verify Port

Verify that the serial (COM) port is listed in Windows Control Panel > Device Manager > Ports.

Sending and Receiving

If you have problems sending or receiving, you may need to configure communication settings such
as BaudRate, DataBits, Parity, StopBits, or Terminator. Make sure you configure these
communication parameters to match those of the connected device.

VISA

For serial communication, you can also use VISA with a VISA resource name, as defined in a VISA
vendor utility, such as Keysight Connection Expert.

Third-party Software

For troubleshooting serial port communication, you can also use a third-party serial communication
software, such as PuTTY or Tera Term, to isolate the issue.

Incorrect Data
When doing binary data communication with read and write, make sure the correct data type - for

example int16, uint16, double - is being used with read and write. You should use the same
data type as the instrument uses.

Troubleshooting Serial Port Interface

If reading and writing data types other than uint8 or int8, make sure the ByteOrder is correct.

See Also
serialport | serialportlist

Related Examples

. “Resolve Serial Port Connection Errors” on page 12-38
. “Serialport Warning - Unable to Read Any Data” on page 12-41
. “Serialport Warning - Unable to Read All Data” on page 12-40

12-37

12 Sserial Port 1/0

Resolve Serial Port Connection Errors

12-38

Issue

If you are unable to connect to a serial port device using the serialport interface, follow these
troubleshooting steps.

Possible Solutions
Check Device Status

Check that the specified port is not in use.
* Make sure that a serialport object using the same port number does not already exist in the
workspace. You can create only one serialport object for each port.

* Check that your device is not in use outside of MATLAB. Disconnect your device from any other
devices, applications, or programs.

* Use a third-party serial communication software, such as PuTTY, to check that you can access the
specified port from other software.

* Make sure that your device is powered on and connected to your computer.
Verify Port Name
Check that the specified port name is correct and that a device is connected to it.

* Use the serialportlist function to return a list of all serial ports that you have access to on
your computer. Use serialportlist("available") to return a list of only serial ports that are
available. Make sure that you are creating a serialport object using one of the listed ports.

* Check from your computer settings that the device connected to the serial port is available. For
more information on how to view this information on your platform, see “Find Serial Port
Information for Your Platform” on page 12-9.

Specify Supported Parameters
Check that the specified parameters are supported by your device.

* Make sure that the baud rate specified as an input argument is supported by your device. Refer to
your device documentation for this information. The baud rate must match the device
configuration.

» Ifyou have specified any other parameters using name-value arguments, make sure that those are
supported by your device as well. You can specify the DataBits, Parity, StopBits,
FlowControl, ByteOrder, and Timeout properties using name-value arguments.

Additional Troubleshooting for Virtual Serial Port Connection

If you have devices that present themselves as serial ports on your operating system, you can use
them as virtual USB serial ports. One example of such a device is a USB serial dongles.

+ If you are connecting to a device over a virtual serial port, check that the device drivers are
properly installed.

Resolve Serial Port Connection Errors

» If you are using Linux, you might need to enable permissions to read from and write to a virtual
serial port. Some Linux distributions require the user account to be a member of the dialout group
to have permission to read from and write to the serial port.

See Also
serialport

Related Examples
. “Troubleshooting Serial Port Interface” on page 12-35

12-39

12 Sserial Port 1/0

Serialport Warning - Unable to Read All Data

12-40

These remedies apply to the case when you receive some data and you get this warning message:

'serialport' unable to read all requested data.

When using the serialport interface for:

* Reading binary data using the read function

These are possible causes and remedies:

Cause

Solution

The number of values to read was set
to a higher value than what was
available to be read.

Set the number of values to read using the input argument
count on the read function. For information about setting
the number of values to read, see read.

Device did not send all the requested
data.

Check your device connection. For more information about
troubleshooting configuration and connection, see
“Troubleshooting Serial Port Interface” on page 12-35.

There was a data format mismatch.

Verify that the device data format matches the specified read
format. Data format is set using the input argument
precision on the read function. For more information
about supported precisions, see read.

More Troubleshooting Help

For more information about troubleshooting the Serial interface, including supported platforms,
adaptor requirements, configuration and connection, and other troubleshooting tips, see

“Troubleshooting Serial Port Interface’

" on page 12-35.

Serialport Warning - Unable to Read Any Data

Serialport Warning - Unable to Read Any Data

These remedies apply to the case when you receive no data and you get this warning message:

'serialport' unable to read any data.

When using the serialport interface for:

* Reading ASCII (text) data using the readline function

* Reading binary data using the read function

These are possible causes and remedies:

Cause

Solution

An invalid command was sent to the
device, so there is a problem reading
the response to the command.

Check your device manual for proper command formatting.

Your device is connected to an
incorrect serial port.

Verify that your device is connected to the specified port. It
must match the port you specify when you create the
serialport object. For information about specifying the
port, see serialport.

An incorrect write terminator was
sent to the instrument before
attempting to read data, so there is
no data to read.

Verify that the Terminator property is set to the value
required by your device. For more information about setting
the property, see configureTerminator.

Your device is not configured to send
data on the serial port.

Verify the device communication settings. For more
information about communication settings, see “Create Serial
Port Object” on page 12-13 and “Configure Serial Port
Communication Settings” on page 12-15.

More Troubleshooting Help

For more information about troubleshooting the Serial interface, including supported platforms,
adaptor requirements, configuration and connection, and other troubleshooting tips, see
“Troubleshooting Serial Port Interface” on page 12-35.

12-41

Large Data

“Getting Started with MapReduce” on page 13-3

“Write a Map Function” on page 13-9

“Write a Reduce Function” on page 13-13

“Speed Up and Deploy MapReduce Using Other Products” on page 13-17
“Build Effective Algorithms with MapReduce” on page 13-18

“Debug MapReduce Algorithms” on page 13-20

“Analyze Big Data in MATLAB Using MapReduce” on page 13-25

“Find Maximum Value with MapReduce” on page 13-33

“Compute Mean Value with MapReduce” on page 13-36

“Compute Mean by Group Using MapReduce” on page 13-39

“Create Histograms Using MapReduce” on page 13-44

“Simple Data Subsetting Using MapReduce” on page 13-51

“Using MapReduce to Compute Covariance and Related Quantities” on page 13-57
“Compute Summary Statistics by Group Using MapReduce” on page 13-62
“Using MapReduce to Fit a Logistic Regression Model” on page 13-69

“Tall Skinny QR (TSQR) Matrix Factorization Using MapReduce” on page 13-75
“Compute Maximum Average HSV of Images with MapReduce” on page 13-80
“Getting Started with Datastore” on page 13-86

“Select Datastore for File Format or Application” on page 13-90

“Work with Remote Data” on page 13-93

“Read and Analyze Large Tabular Text File” on page 13-98

“Read and Analyze Image Files” on page 13-100

“Read and Analyze MAT-File with Key-Value Data” on page 13-104

“Read and Analyze Hadoop Sequence File” on page 13-107

“Develop Custom Datastore” on page 13-109

“Testing Guidelines for Custom Datastores” on page 13-118

“Develop Custom Datastore for DICOM Data” on page 13-126

“Set Up Datastore for Processing on Different Machines or Clusters” on page 13-132
“Apache Parquet Data Type Mappings” on page 13-135

“Tall Arrays for Out-of-Memory Data” on page 13-146

“Deferred Evaluation of Tall Arrays” on page 13-152

“Index and View Tall Array Elements” on page 13-157

“Histograms of Tall Arrays” on page 13-166

“Visualization of Tall Arrays” on page 13-171

“Grouped Statistics Calculations with Tall Arrays” on page 13-179

13 Large Data

» “Extend Tall Arrays with Other Products” on page 13-185
* “Analyze Big Data in MATLAB Using Tall Arrays” on page 13-187
* “Develop Custom Tall Array Algorithms” on page 13-196

13-2

Getting Started with MapReduce

Getting Started with MapReduce

As the number and type of data acquisition devices grows annually, the sheer size and rate of data
being collected is rapidly expanding. These big data sets can contain gigabytes or terabytes of data,
and can grow on the order of megabytes or gigabytes per day. While the collection of this information
presents opportunities for insight, it also presents many challenges. Most algorithms are not
designed to process big data sets in a reasonable amount of time or with a reasonable amount of
memory. MapReduce allows you to meet many of these challenges to gain important insights from
large data sets.

In this section...
“What Is MapReduce?” on page 13-3
“MapReduce Algorithm Phases” on page 13-3

“Example MapReduce Calculation” on page 13-4

What Is MapReduce?

MapReduce is a programming technique for analyzing data sets that do not fit in memory. You may be
familiar with Hadoop® MapReduce, which is a popular implementation that works with the Hadoop
Distributed File System (HDFS™). MATLAB provides a slightly different implementation of the
MapReduce technique with the mapreduce function.

mapreduce uses a datastore to process data in small blocks that individually fit into memory. Each
block goes through a Map phase, which formats the data to be processed. Then the intermediate data
blocks go through a Reduce phase, which aggregates the intermediate results to produce a final
result. The Map and Reduce phases are encoded by map and reduce functions, which are primary
inputs to mapreduce. There are endless combinations of map and reduce functions to process data,
so this technique is both flexible and extremely powerful for tackling large data processing tasks.

mapreduce lends itself to being extended to run in several environments. For more information about
these capabilities, see “Speed Up and Deploy MapReduce Using Other Products” on page 13-17.

The utility of the mapreduce function lies in its ability to perform calculations on large collections of
data. Thus, mapreduce is not well-suited for performing calculations on normal sized data sets which
can be loaded directly into computer memory and analyzed with traditional techniques. Instead, use

mapreduce to perform a statistical or analytical calculation on a data set that does not fit in memory.

Each call to the map or reduce function by mapreduce is independent of all others. For example, a
call to the map function cannot depend on inputs or results from a previous call to the map function.
It is best to break up such calculations into multiple calls to mapreduce.

MapReduce Algorithm Phases

mapreduce moves each block of data in the input datastore through several phases before reaching
the final output. The following figure outlines the phases of the algorithm for mapreduce.

13-3

13 Large Data

13-4

Map Phase ntermediate Phase Reduce Phase

bt

nput datastore KeyValueStore Cutput datastore
{keyl} [valuel],
_____ e valuez] | ValueIterator el o 4 [outReyl])
chunk » napper 1 —m [.] — (for key1) —w reducer 1 —w [outvali]
{keyt} [valuel], [)
ke — [value2], ValueIterator I ocutReyF
LR H mapperil —w : ™ for keyH) ¥ recucerM = | foutvale)

The algorithm has the following steps:

1

mapreduce reads a block of data from the input datastore using [data,info] = read(ds),
and then calls the map function to work on that block.

The map function receives the block of data, organizes it or performs a precursory calculation,
and then uses the add and addmulti functions to add key-value pairs to an intermediate data
storage object called a KeyValueStore. The number of calls to the map function by mapreduce
is equal to the number of blocks in the input datastore.

After the map function works on all of the blocks of data in the datastore, mapreduce groups all
of the values in the intermediate KeyValueStore object by unique key.

Next, mapreduce calls the reduce function once for each unique key added by the map function.
Each unique key can have many associated values. mapreduce passes the values to the reduce
function as a ValueIterator object, which is an object used to iterate over the values. The
Valuelterator object for each unique key contains all the associated values for that key.

The reduce function uses the hasnext and getnext functions to iterate through the values in
the ValuelIterator object one at a time. Then, after aggregating the intermediate results from
the map function, the reduce function adds final key-value pairs to the output using the add and
addmulti functions. The order of the keys in the output is the same as the order in which the
reduce function adds them to the final KeyValueStore object. That is, mapreduce does not
explicitly sort the output.

Note The reduce function writes the final key-value pairs to a final KeyValueStore object.
From this object, mapreduce pulls the key-value pairs into the output datastore, which is a
KeyValueDatastore object by default.

Example MapReduce Calculation

This example uses a simple calculation (the mean travel distance in a set of flight data) to illustrate
the steps needed to run mapreduce.

Prepare Data

The first step to using mapreduce is to construct a datastore for the data set. Along with the map and
reduce functions, the datastore for a data set is a required input to mapreduce, since it allows
mapreduce to process the data in blocks.

Getting Started with MapReduce

mapreduce works with most types of datastores. For example, create a TabularTextDatastore
object for the airlinesmall. csv data set.

ds =
ds =

tabularTextDatastore('airlinesmall.csv', 'TreatAsMissing', 'NA")

TabularTextDatastore with properties:

Files:

Folders:

FileEncoding:
AlternateFileSystemRoots:
PreserveVariableNames:
ReadVariableNames:
VariableNames:
Datetimelocale:

Text Format Properties:

NumHeaderLines:
Delimiter:
RowDelimiter:
TreatAsMissing:
MissingValue:

...\matlab\toolbox\matlab\demos\airlinesmall.csv'

B e]

...\matlab\toolbox\matlab\demos'
}
'UTF-8'
{}

false
true
{'Year"',
en_US

'Month', 'DayofMonth' . and 26 more}

0
"\r\n’
‘NA"

NaN

Advanced Text Format Properties:

TextscanFormats:
TextType:
ExponentCharacters:
CommentStyle:
Whitespace:
MultipleDelimitersAsOne:

Properties that control the table returned by preview,
SelectedVariableNames:
SelectedFormats:

ReadSize:

OutputType:

RowTimes:

Write-specific Properties:
SupportedOutputFormats:
DefaultOutputFormat:

ofl, e, tuf
'char'

'eEdD"'

" \b\t'

false

. and 26 more}

read, readall:
'DayofMonth' . and 26 more}
. and 26 more}

{'Year', 'Month',
{'%f', '%f', '%f'
20000 rows
"table’

[

["txt" "csv "xlsx" x1s

iyt

"parquet” "parq"]

Several of the previously described options are useful in the context of mapreduce. The mapreduce
function executes read on the datastore to retrieve data to pass to the map function. Therefore, you
can use the SelectedVariableNames, SelectedFormats, and ReadSize options to directly
configure the block size and type of data that mapreduce passes to the map function.

For example, to select the Distance (total flight distance) variable as the only variable of interest,

specify SelectedVariableNames.
ds.SelectedVariableNames = 'Distance’;

Now, whenever the read, readall, or preview functions act on ds, they will return only
information for the Distance variable. To confirm this, you can preview the first few rows of data in
the datastore. This allows you to examine the format of the data that the mapreduce function will
pass to the map function.

preview(ds)
ans =
8x1 table

Distance

13-5

13 Large Data

13-6

308
296
480
296
373
308
447
954

To view the exact data that mapreduce will pass to the map function, use read.
For additional information and a complete summary of the available options, see “Datastore”.
Write Map and Reduce Functions

The mapreduce function automatically calls the map and reduce functions during execution, so these
functions must meet certain requirements to run properly.

1 The inputs to the map function are data, info, and intermKVStore:

* data and info are the result of a call to the read function on the input datastore, which
mapreduce executes automatically before each call to the map function.

* intermKVStore is the name of the intermediate KeyValueStore object to which the map
function needs to add key-value pairs. The add and addmulti functions use this object name
to add key-value pairs. If none of the calls to the map function add key-value pairs to
intermKVStore, then mapreduce does not call the reduce function and the resulting
datastore is empty.

A simple example of a map function is:

function MeanDistMapFun(data, info, intermKVStore)
distances = data.Distance(~isnan(data.Distance));
sumLenValue = [sum(distances) length(distances)];
add(intermKVStore, 'sumAndLength', sumLenValue);
end

This map function has only three lines, which perform some straightforward roles. The first line
filters out all NaN values in the block of distance data. The second line creates a two-element
vector with the total distance and count for the block, and the third line adds that vector of
values to intermKVStore with the key, 'sumAndLength'. After this map function runs on all of
the blocks of data in ds, the intermKVStore object contains the total distance and count for
each block of distance data.

Save this function in your current folder as MeanDistMapFun.m.
2 The inputs to the reduce function are intermKey, intermvValIter, and outKVStore:

* intermKey is for the active key added by the map function. Each call to the reduce function
by mapreduce specifies a new unique key from the keys in the intermediate KeyValueStore
object.

* intermVallteristhe ValueIterator associated with the active key, intermKey. This

Valuelterator object contains all of the values associated with the active key. Scroll
through the values using the hasnext and getnext functions.

* outKVStore is the name for the final KeyValueStore object to which the reduce function
needs to add key-value pairs. mapreduce takes the output key-value pairs from outkVStore

Getting Started with MapReduce

and returns them in the output datastore, which is a KeyValueDatastore object by default.
If none of the calls to the reduce function add key-value pairs to outkVStore, then
mapreduce returns an empty datastore.

A simple example of a reduce function is:

function MeanDistReduceFun(intermKey, intermVallter, outKVStore)
sumLen = [0 0O];
while hasnext(intermVallter)
sumLen = sumLen + getnext(intermVallter);
end
add(outkKVStore, 'Mean', sumLen(1l)/sumLen(2));
end

This reduce function loops through each of the distance and count values in intermValIter,
keeping a running total of the distance and count after each pass. After this loop, the reduce
function calculates the overall mean flight distance with a simple division, and then adds a single
key to outKVStore.

Save this function in your current folder as MeanDistReduceFun.m.

For information about writing more advanced map and reduce functions, see “Write a Map Function”
on page 13-9 and “Write a Reduce Function” on page 13-13.

Run mapreduce

After you have a datastore, a map function, and a reduce function, you can call mapreduce to
perform the calculation. To calculate the average flight distance in the data set, call mapreduce
using ds, MeanDistMapFun, and MeanDistReduceFun.

outds = mapreduce(ds, @MeanDistMapFun, @MeanDistReduceFun);

sk ok ok ok ok ok oK ok ok ok ok ok ok koK oK ok ok K oK ok ok 3k oK oK oK K K oK ok K

* MAPREDUCE PROGRESS *
sk ok ok ok ok ok oK ok ok koK ok ok koK oK ok ok K oK ok ok 3k oK oK oK K K oK ok K

Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 100%

By default, the mapreduce function displays progress information at the command line and returns a
KeyValueDatastore object that points to files in the current folder. You can adjust all three of these
options using the Name, Value pair arguments for 'OutputFolder', 'OutputType', and
'Display'. For more information, see the reference page for mapreduce.

View Results

Use the readall function to read the key-value pairs from the output datastore.
readall(outds)

ans =

13-7

13 Large Data

1x2 table

Key Value

{'Mean'} {[702.16301}

See Also
tabularTextDatastore | mapreduce

Related Examples
. “Build Effective Algorithms with MapReduce” on page 13-18

13-8

Write a Map Function

Write a Map Function

In this section...
“Role of Map Function in MapReduce” on page 13-9

“Requirements for Map Function” on page 13-10

“Sample Map Functions” on page 13-10

Role of Map Function in MapReduce

mapreduce requires both an input map function that receives blocks of data and that outputs
intermediate results, and an input reduce function that reads the intermediate results and produces a
final result. Thus, it is normal to break up a calculation into two related pieces for the map and
reduce functions to fulfill separately. For example, to find the maximum value in a data set, the map
function can find the maximum value in each block of input data, and then the reduce function can
find the single maximum value among all of the intermediate maxima.

This figure shows the Map phase of the mapreduce algorithm.
Map Fhasea Intermediate Phase

Group values by unigue key

npLt defastare KeyValueStore {keyl} [valuel]
[value2] ,
mapper 1
chunk read - . {kayl}
- add or addmulti "l | {valuel}
{key2} [valuel],
[valual],
—
mapper M
I read _ X (kg
o add or addmulti "l | {valueP}
. {keyH} [valuel],
[value2] ,

The Map phase of the mapreduce algorithm has the following steps:

1 mapreduce reads a single block of data using the read function on the input datastore, then
calls the map function to work on the block.

2 The map function then works on the individual block of data and adds one or more key-value
pairs to the intermediate KeyValueStore object using the add or addmulti functions.

3 mapreduce repeats this process for each of the blocks of data in the input datastore, so that the
total number of calls to the map function is equal to the number of blocks of data. The ReadSize
property of the datastore determines the number of data blocks.

The Map phase of the mapreduce algorithm is complete when the map function processes each of
the blocks of data in the input datastore. The result of this phase of the mapreduce algorithm is a

13-9

13 Large Data

13-10

KeyValueStore object that contains all of the key-value pairs added by the map function. After the
Map phase, mapreduce prepares for the Reduce phase by grouping all the values in the
KeyValueStore object by unique key.

Requirements for Map Function

mapreduce automatically calls the map function for each block of data in the input datastore. The
map function must meet certain basic requirements to run properly during these automatic calls.
These requirements collectively ensure the proper movement of data through the Map phase of the
mapreduce algorithm.

The inputs to the map function are data, info, and intermKVStore:

* data and info are the result of a call to the read function on the input datastore, which
mapreduce executes automatically before each call to the map function.

* 1intermKVStore is the name of the intermediate KeyValueStore object to which the map
function needs to add key-value pairs. The add and addmulti functions use this object name to
add key-value pairs. If the map function does not add any key-value pairs to the intermKVStore
object, then mapreduce does not call the reduce function and the resulting datastore is empty.

In addition to these basic requirements for the map function, the key-value pairs added by the map
function must also meet these conditions:

1 Keys must be numeric scalars, character vectors, or strings. Numeric keys cannot be NaN,
complex, logical, or sparse.

2 All keys added by the map function must have the same class.

3 Values can be any MATLAB object, including all valid MATLAB data types.

Note The above key-value pair requirements may differ when using other products with mapreduce.
See the documentation for the appropriate product to get product-specific key-value pair
requirements.

Sample Map Functions
Here are a few illustrative map functions used in mapreduce examples.
Identity Map Function

A map function that simply returns what mapreduce passes to it is called an identity mapper. An
identity mapper is useful to take advantage of the grouping of values by unique key before doing
calculations in the reduce function. The identityMapper mapper file is one of the mappers used in
the example “Tall Skinny QR (TSQR) Matrix Factorization Using MapReduce” on page 13-75.

function identityMapper(data, info, intermKVStore)
% This mapper function simply copies the data and add them to the
% intermKVStore as intermediate values.
x = data.Value{:,:};
add(intermKVStore, 'Identity', X);
end

Write a Map Function

Simple Map Function

One of the simplest examples of a nonidentity mapper is maxArrivalDelayMapper, which is the
mapper for the example “Find Maximum Value with MapReduce” on page 13-33. For each chunk of
input data, this mapper calculates the maximum arrival delay and adds a key-value pair to the
intermediate KeyValueStore.

function maxArrivalDelayMapper (data, info, intermKVStore)
partMax = max(data.ArrDelay);
add(intermKVStore, 'PartialMaxArrivalDelay',partMax);
end

Advanced Map Function

A more advanced example of a mapper is statsByGroupMapper, which is the mapper for the
example “Compute Summary Statistics by Group Using MapReduce” on page 13-62. This mapper
uses a nested function to calculate several statistical quantities (count, mean, variance, and so on) for
each chunk of input data, and then adds several key-value pairs to the intermediate KeyValueStore
object. Also, this mapper uses four input arguments, whereas mapreduce only accepts a map
function with three input arguments. To get around this, pass in the extra parameter using an
anonymous function during the call to mapreduce, as outlined in the example.

function statsByGroupMapper(data, ~, intermKVStore, groupVarName)
% Data is a n-by-3 table. Remove missing values first
delays = data.ArrDelay;
groups = data. (groupVarName);
notNaN =~isnan(delays);
groups = groups(notNaN);
delays = delays(notNaN);
% Find the unique group levels in this chunk
[intermKeys,~,idx] = unique(groups, 'stable');
% Group delays by idx and apply @grpstatsfun function to each group
intermVals = accumarray(idx,delays,size(intermKeys),@grpstatsfun);
addmulti(intermKVStore,intermKeys,intermVals);
function out = grpstatsfun(x)

n = length(x); % count
m = sum(x)/n; % mean
v = sum((x-m).”2)/n; % variance
s = sum((x-m).”3)/n; % skewness without normalization
k = sum((x-m).”4)/n; % kurtosis without normalization
out = {[n, m, v, s, kl};

end

end
More Map Functions

For more information about common programming patterns in map or reduce functions, see “Build
Effective Algorithms with MapReduce” on page 13-18.

See Also
mapreduce | tabularTextDatastore | add | addmulti

More About

. KeyValueStore
. “Write a Reduce Function” on page 13-13

13-11

13 Large Data

. “Getting Started with MapReduce” on page 13-3

13-12

Write a Reduce Function

Write a Reduce Function

In this section...
“Role of the Reduce Function in MapReduce” on page 13-13
“Requirements for Reduce Function” on page 13-14

“Sample Reduce Functions” on page 13-14

Role of the Reduce Function in MapReduce

mapreduce requires both an input map function that receives blocks of data and that outputs
intermediate results, and an input reduce function that reads the intermediate results and produces a
final result. Thus, it is normal to break up a calculation into two related pieces for the map and
reduce functions to fulfill separately. For example, to find the maximum value in a data set, the map
function can find the maximum value in each block of input data, and then the reduce function can
find the single maximum value among all of the intermediate maxima.

This figure shows the Reduce phase of the mapreduce algorithm.

Intermediate Phase Reduce Phase
recducar KeyValueStore Cutput datastore
Valuelterator basoext OF getnext o | {key1l [valuel], {keyl} [valuell,
(for keyl) g i [valu=2], [valuaZ] ,
add or addmulti : :
—
reducer M {keyHl [valuell, {keyM} [valuel],
[valuaZ] , [valuaZ] ,
Valuelterator p| | hasnext or getnext : :
(for keyM) >

add or addmulti

The Reduce phase of the mapreduce algorithm has the following steps:

1 The result of the Map phase of the mapreduce algorithm is an intermediate KeyValueStore
object that contains all of the key-value pairs added by the map function. Before calling the
reduce function, mapreduce groups the values in the intermediate KeyValueStore object by
unique key. Each unique key in the intermediate KeyValueStore object results in a single call to
the reduce function.

2 For each key, mapreduce creates a ValueIterator object that contains all of the values
associated with that key.

3 The reduce function scrolls through the values from the ValueIterator object using the
hasnext and getnext functions, which are typically used in a while loop.

4 After performing a summary calculation, the reduce function adds one or more key-value pairs to
the final KeyValueStore object using the add and addmulti functions.

13-13

13 Large Data

The Reduce phase of the mapreduce algorithm is complete when the reduce function processes all of
the unique intermediate keys and their associated values. The result of this phase of the mapreduce
algorithm (similar to the Map phase) is a KeyValueStore object containing all of the final key-value
pairs added by the reduce function. After the Reduce phase, mapreduce pulls the key-value pairs
from the KeyValueStore and returns them in a datastore (a KeyValueDatastore object by
default). The key-value pairs in the output datastore are not in sorted order; they appear in the same
order as they were added by the reduce function.

Requirements for Reduce Function

mapreduce automatically calls the reduce function for each unique key in the intermediate
KeyValueStore object, so the reduce function must meet certain basic requirements to run properly
during these automatic calls. These requirements collectively ensure the proper movement of data
through the Reduce phase of the mapreduce algorithm.

The inputs to the reduce function are intermKey, intermVallter, and outKVStore:

* intermKey is one of the unique keys added by the map function. Each call to the reduce function
by mapreduce specifies a new unique key from the keys in the intermediate KeyValueStore
object.

* intermVallteristhe ValueIterator object associated with the active key, intermKey. This
ValueIterator object contains all of the values associated with the active key. Scroll through
the values using the hasnext and getnext functions.

* outKVStore is the name for the final KeyValueStore object to which the reduce function needs
to add key-value pairs. The add and addmulti functions use this object name to add key-value
pairs to the output. mapreduce takes the output key-value pairs from outkVStore and returns
them in the output datastore, which is a KeyValueDatastore object by default. If the reduce
function does not add any key-value pairs to outKVStore, then mapreduce returns an empty
datastore.

In addition to these basic requirements for the reduce function, the key-value pairs added by the
reduce function must also meet these conditions:

1 Keys must be numeric scalars, character vectors, or strings. Numeric keys cannot be NaN,
logical, complex, or sparse.

2 All keys added by the reduce function must have the same class, but that class may differ from
the class of the keys added by the map function.

3 Ifthe OutputType argument of mapreduce is 'Binary' (the default), then a value added by
the reduce function can be any MATLAB object, including all valid MATLAB data types.

4 Ifthe OutputType argument of mapreduce is 'TabularText', then a value added by the
reduce function can be a numeric scalar, character vector, or string. In this case, the value
cannot be NaN, complex, logical, or sparse.

Note The above key-value pair requirements may differ when using other products with mapreduce.
See the documentation for the appropriate product to get product-specific key-value pair
requirements.

Sample Reduce Functions

Here are a few illustrative reduce functions used in mapreduce examples.

13-14

Write a Reduce Function

Simple Reduce Function

One of the simplest examples of a reducer is maxArrivalDelayReducer, which is the reducer for
the example “Find Maximum Value with MapReduce” on page 13-33. The map function in this
example finds the maximum arrival delay in each chunk of input data. Then the reduce function
finishes the task by finding the single maximum value among all of the intermediate maxima. To find
the maximum value, the reducer scrolls through the values in the ValueIterator object and
compares each value to the current maximum. mapreduce only calls this reducer function once,
since the mapper adds a single unique key to the intermediate KeyValueStore object. The reduce
function adds a single key-value pair to the output.

function maxArrivalDelayReducer(intermKey, intermValIter, outKVStore)
% intermKey is 'PartialMaxArrivalDelay'. intermValIter is an iterator of
% all values that has the key 'PartialMaxArrivalDelay'.
maxVal = -Inf;
while hasnext(intermValIter)
maxVal = max(getnext(intermVallter), maxVal);
end
% The key-value pair added to outKVStore will become the output of mapreduce
add (outKVStore, '"MaxArrivalDelay',maxVal);
end

Advanced Reduce Function

A more advanced example of a reducer is statsByGroupReducer, which is the reducer for the
example “Compute Summary Statistics by Group Using MapReduce” on page 13-62. The map
function in this example groups the data in each input using an extra parameter (airline carrier,
month, and so on), and then calculates several statistical quantities for each group of data. The
reduce function finishes the task by retrieving the statistical quantities and concatenating them into
long vectors, and then using the vectors to calculate the final statistical quantities for count, mean,
variance, skewness, and kurtosis. The reducer stores these values as fields in a structure, so that
each unique key has a structure of statistical quantities in the output.

function statsByGroupReducer(intermKey, intermVallIter, outKVStore)
% Reducer function for the StatisticsByGroupMapReduceExample.

o°

Copyright 2014 The MathWorks, Inc.

~un < 335
[TR TR TR
MDD L N

’
’
’
’
’

% get all sets of intermediate statistics
while hasnext(intermValIter)
value = getnext(intermVallter);

[n; value(l)];

[m; value(2)];

[v; value(3)];

[s; value(4)];

[k; value(5)];

xn <335
L LI [| |

end

% Note that this approach assumes the concatenated intermediate values fit
% in memory. Refer to the reducer function, covarianceReducer, of the

% CovarianceMapReduceExample for an alternative pairwise reduction approach

% combine the intermediate results
count = sum(n);

meanVal = sum(n.*m)/count;

d = m - meanVal;

variance = (sum(n.*v) + sum(n.*d.”2))/count;
skewnessVal = (sum(n.*s) + sum(n.*d.*(3*v + d.”2)))./(count*variance”(1.5));
kurtosisVal = (sum(n.*k) + sum(n.*d.*(4*s + 6.*v.*d +d.”3)))./(count*variance”2);

13-15

13 Large Data

outValue = struct('Count',count, 'Mean',meanVal, 'Variance',bvariance,...
'Skewness',skewnessVal, 'Kurtosis',kurtosisVal);

% add results to the output datastore
add (outKVStore, intermKey,outValue);

More Reduce Functions

For more information about common programming patterns in map or reduce functions, see “Build
Effective Algorithms with MapReduce” on page 13-18.

See Also
mapreduce | tabularTextDatastore | add | addmulti | hasnext | getnext

More About

. KeyValueStore

. Valuelterator

. “Write a Map Function” on page 13-9

. “Getting Started with MapReduce” on page 13-3

13-16

Speed Up and Deploy MapReduce Using Other Products

Speed Up and Deploy MapReduce Using Other Products

In this section...

“Execution Environment” on page 13-17
“Running in Parallel” on page 13-17
“Application Deployment” on page 13-17

Execution Environment

To use mapreduce with Parallel Computing Toolbox™, MATLAB Parallel Server™, or MATLAB
Compiler™, use the mapreducer configuration function to change the execution environment for
mapreduce. This enables you to start small to verify your map and reduce functions, then quickly
scale up to run larger calculations.

Running in Parallel

Parallel Computing Toolbox can immediately speed up your mapreduce algorithms by using the full
processing power of multicore computers to execute applications with a parallel pool of workers. If
you already have Parallel Computing Toolbox installed, then you probably do not need to do anything
special to take advantage of these capabilities. For more information about using mapreduce with
Parallel Computing Toolbox, see “Run mapreduce on a Parallel Pool” (Parallel Computing Toolbox).

MATLAB Parallel Server enables you to run the same applications on a remote computer cluster. For
more information, including how to configure MATLAB Parallel Server to support Hadoop clusters,
see “Tall Arrays and mapreduce” (Parallel Computing Toolbox).

Application Deployment

MATLAB Compiler enables you to create standalone mapreduce applications or deployable archives,
which you can share with colleagues or deploy to production Hadoop systems.

For more information, see “MapReduce Applications on Hadoop Clusters” (MATLAB Compiler).

See Also
mapreducer | gcmr

13-17

13 Large Data

Build Effective Algorithms with MapReduce

13-18

The mapreduce example files that ship with MATLAB illustrate different programming techniques.
You can use these examples as a starting point to quickly prototype similar mapreduce calculations.

Note The associated files for these examples are all in the toolbox/matlab/demos/ folder.

Using MapReduce” on
page 13-44

duceExample.m

histograms

Example Link Primary File Description Notable Programming
Techniques

“Find Maximum Value |MaxMapReduceExampl |Find maximum arrival |One intermediate key

with MapReduce” on e.m delay and minimal

page 13-33 computation.

“Compute Mean Value |MeanMapReduceExamp |Find mean arrival delay |One intermediate key

with MapReduce” on le.m with intermediate state

page 13-36 (accumulating
intermediate sum and
count).

“Create Histograms VisualizationMapRe |Visualize data using Low-volume summaries

of data, sufficient to
generate a graphic and
gain preliminary
insights.

“Compute Mean by
Group Using
MapReduce” on page
13-39

MeanByGroupMapRedu
ceExample.m

Compute mean arrival
delay for each day of
the week

Perform simple
computations on
subgroups of input data
using several
intermediate keys.

“Compute Maximum
Average HSV of Images
with MapReduce” on
page 13-80

HueSaturationValue
Example.m

Determine average
maximum hue,
saturation, and
brightness in an image
collection

Analyzes an image
datastore using three
intermediate keys. The
outputs are filenames,
which can be used to
view the images.

“Simple Data
Subsetting Using
MapReduce” on page
13-51

SubsettingMapReduc
eExample.m

Create single table from
subset of large data set

Extraction of subset of
large data set to look
for patterns. The
procedure is
generalized using a
parameterized map
function to pass in the
subsetting criteria.

Build Effective Algorithms with MapReduce

Example Link Primary File Description Notable Programming
Techniques

“Using MapReduce to [CovarianceMapReduc |Compute covariance Calculate several

Compute Covariance eExample.m and related quantities |intermediate values and

and Related Quantities” store them with the

on page 13-57 same key. Use
covariance to obtain a
correlation matrix and
regression coefficients,
and to perform principal
components analysis.

“Compute Summary StatisticsByGroupM |Compute summary Use an anonymous

Statistics by Group
Using MapReduce” on
page 13-62

apReduceExample.m

statistics organized by
group

function to pass an
extra grouping
parameter to a
parameterized map
function. This
parameterization allows
you to quickly
recalculate statistics
using different grouping
variables.

“Using MapReduce to
Fit a Logistic
Regression Model” on
page 13-69

LogitMapReduceExam
ple.m

Fit simple logistic
regression model

Chain multiple
mapreduce calls to
carry out an iterative
regression algorithm.
An anonymous function
passes information from
one iteration to the next
to supply information
directly to the map
function.

“Tall Skinny QR (TSQR)
Matrix Factorization
Using MapReduce” on
page 13-75

TSQRMapReduceExamp
le.m

Tall skinny QR
decomposition

Chain multiple
mapreduce calls to
perform multiple
iterations of
factorizations. Also use
the info input
argument of the map
function to compute
intermediate numeric
keys.

13-19

13 Large Data

Debug MapReduce Algorithms

13-20

This example shows how to debug your mapreduce algorithms in MATLAB using a simple example
file, MaxMapReduceExample.m. Debugging enables you to follow the movement of data between the
different phases of mapreduce execution and inspect the state of all intermediate variables.

In this section...

“Set Breakpoint” on page 13-20

“Execute mapreduce” on page 13-20

“Step Through Map Function” on page 13-21
“Step Through Reduce Function” on page 13-22

Set Breakpoint

Set one or more breakpoints in your map or reduce function files so you can examine the variable
values where you think the problem is. For more information, see “Set Breakpoints”.

Open the file maxArrivalDelayMapper.m.
edit maxArrivalDelayMapper.m
Set a breakpoint on line 9. This breakpoint causes execution of mapreduce to pause right before

each call to the map function adds a key-value pair to the intermediate KeyValueStore object,
named intermKVStore.

1 function maxArrivalDelayMapper (data, info, intermEV3tore)

2 % Mapper function for the MaxMapreduceExample.

3

4 % Copyright 1984-2014 The MathWorks, Inc.

5

& % Data is an n-by-1 table of the ArrDela A=z the data source is tabular,
7 % the return of read is a tabkle object

B = partMax = max(data.krrDelay):

3@ add (intermEV3tore, 'PartialMaxfirrivallelay',partMax):

Execute mapreduce

Run the mapreduce example file MaxMapReduceExample.m. Specify mapreducer(0) to ensure that
the algorithm does not run in parallel, since parallel execution of mapreduce using Parallel
Computing Toolbox ignores breakpoints.

mapreducer(0);
MaxMapReduceExample

MATLAB stops execution of the file when it encounters the breakpoint in the map function. During
the pause in execution, you can hover over the different variable names in the map function, or type
one of the variable names at the command line to inspect the values.

In this case, the display indicates that, as yet, there are no key-value pairs in intermKVStore.

Debug MapReduce Algorithms

function maxArrivalDelayMapper (data, info, intermEVStore)

% Mapper function for the MaxMapreduceExample.
% Copyright 1984-2014 The MathWorks, Inc.

% Data is an n-by-1 table of the ArrDelay. &s the data source is tabular,
% the return of read is a tabkle object.

- partMax = max(data.krrDelay):

@5 “add(intermEVStore, 'FartialMaxhrrivalDelay',partMax):

w1 o n e W R

intermEVStore: 1xl matlab.mapreduce.KeyValueStore =

FKeyValueS5tore with no key-value pairs.

Feys must be numeric scalars or strings, and values may be any type.

Use add or addmulti to add more key-value pairs.

Step Through Map Function

1 Continue past the breakpoint. You can use dbstep to execute a single line, or dbcont to
continue execution until MATLAB encounters another breakpoint. Alternatively, you can click ﬂi—‘_'l
Step or L Continue in the Editor tab. For more information about all the available options,

see “Debug MATLAB Code Files”.

In this case, use dbstep (or click ll'i’_'l Step) to execute only line 9, which adds a key-value pair to
intermKVStore. Inspect the new display for intermKVStore.

1 function maxArrivalDelayMapper (data, info, intermEVStore)

2 % Mapper function for the MaxMapreduceExample.

3

4 % Copyright 1984-2014 The MathWorks, Inc.

5

& % Data is an n-by-1 table of the ArrDelay. As the data source is tabular,
7 % the return of read is a table object.

= partMax = max (data.ArrDelay):;

1@ add (intermKVStore, 'FartialMaxArrivallelay',partMax):;

intermKVS5tore: 1x1 matlab.mapreduce.KeyValueStore =

KeyValueStore containing string keys.

Keys must be strings, and values may be any type.

Last 1 key-value palir added:

Key Value

'PartialMaxaArrivallDelay" [18&]

Use add or addmulti to add more key-value pairs.

13-21

13 Large Data

13-22

4

Lo
Now, use dbcont (or click Lf'" Continue) to continue execution of mapreduce. During the next
call to the map function, MATLAB halts again on line 9. The new display for intermKVStore
indicates that it does not contain any key-value pairs, because the display is meant to show only
the most recent key-value pairs that are added in the current call to the map (or reduce)
function.

Step past line 9 again using dbstep (or click |17r‘_'| Step) to add the next key-value pair to
intermKVStore, and inspect the new display for the variable. MATLAB displays only the key-
value pair added during the current call to the map function.

1 function maxArrivalDelayMapper (data, info, intermEVStore)

2 % Mapper function for the MaxMapreduceExample.

3

4 % Copyright 1984-2014 The MathWorks, Inc

5

& % Data is an n-by-1 table of the ArrDelay. &s the data source 1is tabular,
7 % the return of read is a tabkle object

B = partMax = max(data.krrDelay):

g .{} add tl:i.nterruKVStoIe, 'PartialMaxfrrivallelay',partMax);

intermEVStore: 1xl matlab.mapreduce.KeyValueStore =

FKeyValueStore containing string keys.

Feys must be strings, and values may be any type.

Last 1 key-value palir added:

Eey Value

'PartialMaxfArrivalDelay" [339]

Use add or addmulti to add more key-value pairs.

Complete the debugging of the map function by removing the breakpoint and closing the file
maxArrivalDelayMapper.m.

Step Through Reduce Function

1

You can use the same process to set breakpoints and step through execution of a reduce function.
The reduce function for this example is maxArrivalDelayReducer.m. Open this file for editing.
edit maxArrivalDelayReducer.m

Set two breakpoints: one on line 10, and one on line 13. This enables you to inspect the
Valuelterator and the final key-value pairs added to the output, outkVStore.

Run the main example file.

MaxMapReduceExample

The execution of the example will pause when the breakpoint on line 10 is encountered. The
debug display for the ValueIterator indicates the active key and whether any values remain to
be retrieved.

Debug MapReduce Algorithms

[I - I T 7 R

w
|

10 @
11 -
12

13 @

function maxadrrivalDelayReducer (intermFey, intermValIter, outEVStore)

% Reducer function for the MaxMapreduceExample.

% Copyright 2014 The MathWorks, Inc.

% intermKey is 'PartialMax@rriwvalDelay'. intermValIter is an iterator of
% all wvalues that has the key 'PartialMaxfirrivalDelay'.

maxVal = -inf;

while hasnext (intermValIter)
maxVal = max(getnext (intermVallter), maxvVal);

end intermVallter: 1x]1 matlab.mapreduce.Valuelterator =
% The key-value pair add|

T Y T
add {outKVStare, 'Maxhrriv) Valuelterator with properties:

FKey: 'PartialMaxArrivalDelay'

One or more values are available.
Use hasnext to check if more wvaluss are available. Use getnexXt to get the next value.

Now, remove the breakpoint on line 10 and use dbcont (or click l—tb-*" Continue) to continue
execution of the example until the next breakpoint is reached (on line 13). Since this reduce
function continually compares each new value from the ValueIterator to the global maximum,
mapreduce execution ends by adding a single key-value pair to outKVStore.

Use dbstep (or click uﬂ"_'l Step) to execute line 13 only. The display for outKVStore shows the
global maximum value that mapreduce will return as the final answer.

13-23

13 Large Data

1 function maxArrivalDelayReducer (intermEey, intermValIter, outEVStore)

2 % BReducer function for the MaxMapreduceExample.

3

4 % Copyright 2014 The MathWorks, Inc.

L

[% intermFey i= 'PartialMaxfrrivalDelay'. intermValIter is an iterator of
7 % all walues that has the key 'PartialMaxArrivalDelavy'.

g - maxVal = —-inf;

9 - while hasnext (intermValIter)

10 — maxVal = max (getnext (intermVallter), maxVal);

11— end

12 % The kevy-value pair added to outEVStore will become the output of mapreduce

13 .' add[butK\FStore, 'MaxArrivalDelay',maxVal);

outEVStore: 1x]l matlab.mapreduce.KeyValueStore =

KeyValueStore containing string kevs.

Keys must be strings, and wvalues may be any tvpe.

Last 1 key-value pair added:

Eey Value

'MaxArrivalDelay" [1014]

Use add or addmulti to add more key-value pairs.

Now use dbcont (or click LE) Continue) to advance execution, enabling the example to finish
running. mapreduce returns the final results.

Map 100% Reduce 100%
ans =

Key Value

'MaxArrivalDelay' [1014]

For a complete guide to debugging in MATLAB, see “Debugging and Analysis”.

See Also
mapreduce

More About

. KeyValueStore
. ValueIterator
. “Getting Started with MapReduce” on page 13-3

13-24

Analyze Big Data in MATLAB Using MapReduce

Analyze Big Data in MATLAB Using MapReduce

This example shows how to use the mapreduce function to process a large amount of file-based data.
The MapReduce algorithm is a mainstay of many modern "big data" applications. This example
operates on a single computer, but the code can scale up to use Hadoop®.

Throughout this example, the data set is a collection of records from the American Statistical
Association for USA domestic airline flights between 1987 and 2008. If you have experimented with
"big data" before, you may already be familiar with this data set. A small subset of this data set is
included with MATLAB® to allow you to run this and other examples.

Introduction to Datastores

Creating a datastore allows you to access a collection of data in a block-based manner. A datastore
can process arbitrarily large amounts of data, and the data can even be spread across multiple files.
You can create a datastore for many file types, including a collection of tabular text files
(demonstrated here), a SQL database (Database Toolbox™ required) or a Hadoop® Distributed File
System (HDFS™).

Create a datastore for a collection of tabular text files and preview the contents.

ds = tabularTextDatastore('airlinesmall.csv');
dsPreview = preview(ds);
dsPreview(:,10:15)

ans=8x6 table
FlightNum TailNum ActualElapsedTime CRSElapsedTime AirTime ArrDelay

1503 {'NA"} 53 57 {'NA"} 8
1550 {'NA"} 63 56 {'NA"} 8
1589 {'NA"} 83 82 {'NA"} 21
1655 {'NA"} 59 58 {'NA"} 13
1702 {'NA"} 77 72 {'NA"} 4
1729 {'NA"} 61 65 {'NA"} 59
1763 {'NA"} 84 79 {'NA"} 3
1800 {'NA"} 155 143 {'NA"} 11

The datastore automatically parses the input data and makes a best guess as to the type of data in
each column. In this case, use the 'TreatAsMissing' name-value pair argument to replace the
missing values correctly. For numeric variables (such as 'AirTime'), tabularTextDatastore
replaces every instance of 'NA' with a NaN value, which is the IEEE arithmetic representation for
Not-a-Number.

ds = tabularTextDatastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.SelectedFormats{strcmp(ds.SelectedVariableNames, 'TailNum')} = '%s';
ds.SelectedFormats{strcmp(ds.SelectedVariableNames, 'CancellationCode')} = '%s';

dsPreview = preview(ds);
dsPreview(:,{'AirTime"', 'TaxiIn', 'TailNum', 'CancellationCode'})

ans=8x4 table
AirTime TaxiIn TailNum CancellationCode

13-25

13 Large Data

13-26

NaN NaN {'NA"} {'NA"}
NaN NaN {'NA"} {'NA"}
NaN NaN {'NA"} {'NA"}
NaN NaN {'NA"} {'NA"}
NaN NaN {'NA"} {'NA"}
NaN NaN {'NA"} {'NA"}
NaN NaN {'NA"} {'NA"}
NaN NaN {'NA"} {'NA"}

Scan for rows of interest

Datastore objects contain an internal pointer to keep track of which block of data the read function
returns next. Use the hasdata and read functions to step through the entire data set, and filter the
data set to only the rows of interest. In this case, the rows of interest are flights on United Airlines
("UA") departing from Boston ("BOS").

subset = [1;

while hasdata(ds)
t = read(ds);
t = t(strcmp(t.UniqueCarrier, 'UA') & strcmp(t.Origin, 'B0OS'), :);
subset = vertcat(subset, t);

end

subset(1:10,[9,10,15:171)

ans=10x5 table
UniqueCarrier FlightNum ArrDelay DepDelay Origin

{'UA"} 121 -9 0 {'B0S'}
{'UA"} 1021 -9 -1 {'B0S'}
{'UA"} 519 15 8 {'B0S'}
{'UA"} 354 9 8 {'B0OS"}
{'UA"} 701 -17 0 {'B0S'}
{'UA"} 673 -9 -1 {'B0S'}
{'UA"'} 91 -3 2 {'B0S'}
{'UA"'} 335 18 4 {'B0S'}
{'UA"} 1429 1 -2 {'B0S'}
{'UA"} 53 52 13 {'B0S'}

Introduction to mapreduce

MapReduce is an algorithmic technique to "divide and conquer" big data problems. In MATLAB,
mapreduce requires three input arguments:

A datastore to read data from

2 A "mapper" function that is given a subset of the data to operate on. The output of the map
function is a partial calculation. mapreduce calls the mapper function one time for each block in
the datastore, with each call operating independently.

3 A 'reducer" function that is given the aggregate outputs from the mapper function. The reducer
function finishes the computation begun by the mapper function, and outputs the final answer.

Analyze Big Data in MATLAB Using MapReduce

This is an over-simplification to some extent, since the output of a call to the mapper function can be
shuffled and combined in interesting ways before being passed to the reducer function. This will be
examined later in this example.

Use mapreduce to perform a computation
A simple use of mapreduce is to find the longest flight time in the entire airline data set. To do this:

1 The "mapper" function computes the maximum of each block from the datastore.

2 The "reducer" function then computes the maximum value among all of the maxima computed by
the calls to the mapper function.

First, reset the datastore and filter the variables to the one column of interest.

reset(ds);
ds.SelectedVariableNames = {'ActualElapsedTime'};

Write the mapper function, maxTimeMapper.m. It takes three input arguments:

The input data, which is a table obtained by applying the read function to the datastore.

A collection of configuration and contextual information, info. This can be ignored in most
cases, as it is here.

3 Anintermediate data storage object, which records the results of the calculations from the
mapper function. Use the add function to add Key/Value pairs to this intermediate output. In this
example, the name of the key ('MaxElapsedTime') is arbitrary.

Save the following mapper function (maxTimeMapper.m) in your current folder.

function maxTimeMapper(data, ~, intermKVStore)
maxElapsedTime = max(data{:,:});
add(intermKVStore, "MaxElapsedTime", maxElapsedTime)
end

Next, write the reducer function. It also takes three input arguments:

1 A set of input "keys". Keys will be discussed further below, but they can be ignored in some
simple problems, as they are here.

2 An intermediate data input object that mapreduce passes to the reducer function. This data is in
the form of Key/Value pairs, and you use the hasnext and getnext functions to iterate through
the values for each key.

3 Afinal output data storage object. Use the add and addmulti functions to directly add Key/Value
pairs to the output.

Save the following reducer function (maxTimeReducer.m) in your current folder.

function maxTimeReducer(~, intermValsIter, outKVStore)
maxElapsedTime = -Inf;
while(hasnext (intermValsIter))
maxElapsedTime = max(maxElapsedTime, getnext(intermValsIter));
end
add (outKVStore, "MaxElapsedTime", maxElapsedTime);
end

Once the mapper and reducer functions are written and saved in your current folder, you can call
mapreduce using the datastore, mapper function, and reducer function. If you have Parallel

13-27

13 Large Data

13-28

Computing Toolbox (PCT), MATLAB will automatically start a pool and parallelize execution. Use the
readall function to display the results of the MapReduce algorithm.

result = mapreduce(ds, @maxTimeMapper, @maxTimeReducer);

sk ok ok ok ok ok oK ok ok ok ok oK ok ok ok oK ok ok 3k oK ok ok 3k K oK ok ok ok K oK ok K

* MAPREDUCE PROGRESS *
3k 5k 5k 5k 5k 5k 5k 5k 5k 5k 5k 5k K K K 3k K 3k 3k 3k >k >k >k >k >k >k >k >k ok ok ok ok
Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 100%

readall(result)

ans=1x2 table
Key Value

{'MaxElapsedTime'} {[1650]1}

Use of keys in mapreduce

The use of keys is an important and powerful feature of mapreduce. Each call to the mapper function
adds intermediate results to one or more named "buckets", called keys. The number of calls to the
mapper function by mapreduce corresponds to the number of blocks in the datastore.

If the mapper function adds values to multiple keys, this leads to multiple calls to the reducer
function, with each call working on only one key's intermediate values. The mapreduce function
automatically manages this data movement between the map and reduce phases of the algorithm.

This flexibility is useful in many contexts. The example below uses keys in a relatively obvious way for
illustrative purposes.

Calculating group-wise metrics with mapreduce

The behavior of the mapper function in this application is more complex. For every flight carrier
found in the input data, use the add function to add a vector of values. This vector is a count of the
number of flights for that carrier on each day in the 21+ years of data. The carrier code is the key for
this vector of values. This ensures that all of the data for each carrier will be grouped together when
mapreduce passes it to the reducer function.

Save the following mapper function (countFlightsMapper.m) in your current folder.

function countFlightsMapper(data, ~, intermKVStore)

dayNumber = days((datetime(data.Year, data.Month, data.DayofMonth) - datetime(1987,10,1)))+1;

daysSinceEpoch = days(datetime(2008,12,31) - datetime(1987,10,1))+1;
[airlineName, ~, airlineIndex] = unique(data.UniqueCarrier, 'stable');

for i = l:numel(airlineName)
dayTotals = accumarray(dayNumber(airlineIndex==1i), 1, [daysSinceEpoch, 1]);
add(intermKVStore, airlineName{i}, dayTotals);

Analyze Big Data in MATLAB Using MapReduce

end
end

The reducer function is less complex. It simply iterates over the intermediate values and adds the
vectors together. At completion, it outputs the values in this aggregate vector. Note that the reducer
function does not need to sort or examine the intermediateKeysIn values; each call to the reducer
function by mapreduce only passes the values for one airline carrier.

Save the following reducer function (countFlightsReducer.m) in your current folder.

function countFlightsReducer(intermKeysIn, intermValsIter, outKVStore)
daysSinceEpoch = days(datetime(2008,12,31) - datetime(1987,10,1))+1;
dayArray = zeros(daysSinceEpoch, 1);

while hasnext(intermValsIter)
dayArray = dayArray + getnext(intermValsIter);
end
add (outkKVStore, intermKeysIn, dayArray);
end

Reset the datastore and select the variables of interest. Once the mapper and reducer functions are
written and saved in your current folder, you can call mapreduce using the datastore, mapper
function, and reducer function.

reset(ds);
ds.SelectedVariableNames = {'Year', 'Month', 'DayofMonth', 'UniqueCarrier'};
result = mapreduce(ds, @countFlightsMapper, @countFlightsReducer);

>k 3k 3k 3k 3ko3kook 3k Sk Sk Sk Sk 5k 5k 5k 5K 3K 5K 5K 3K K K K K K >k >k >k kokok sk

* MAPREDUCE PROGRESS *
3k 5k 3k 3k 5k 3k 3k 5k >k 3k 5k 3k 3k 3K 3k 3k 3k 3Kk 3k kook >k ko ok >k kok kokok >k
Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 10%
Map 100% Reduce 21%
Map 100% Reduce 31%
Map 100% Reduce 41%
Map 100% Reduce 52%
Map 100% Reduce 62%
Map 100% Reduce 72%
Map 100% Reduce 83%
Map 100% Reduce 93%
Map 100% Reduce 100%

result = readall(result);

In case this example was run with only the sample data set, load the results of the mapreduce
algorithm run on the entire data set.

load airlineResults

13-29

13 Large Data

Visualizing the results

Using only the top 7 carriers, smooth the data to remove the effects of weekend travel. This would
otherwise clutter the visualization.

lines
lines

result.Value;
horzcat(lines{:});
[~,sortOrder] = sort(sum(lines),
lines = lines(:,sortOrder(1:7));
result = result(sortOrder(1:7),:);

'descend');

lines(lines==0) = nan;
lines = smoothdata(lines, 'gaussian');

Plot the data.

figure('Position',[1 1 800 600]);
plot(datetime(1987,10,1):caldays(1l):datetime(2008,12,31),lines, 'LineWidth',2)
title ('Domestic airline flights per day per carrier')

xlabel('Date')

ylabel('Flights per day')

legend(result.Key, 'Location', 'Best')

13-30

Analyze Big Data in MATLAB Using MapReduce

Flights per day

Domestic airline flights per day per carrier
3500 T T T T

3000 —

2500

2000

1500

1000

500 : :
1990 1995 2000 2005

Date

The plot shows the emergence of Southwest Airlines (WN) during this time period.

Learning more

This example only scratches the surface of what is possible with mapreduce. See the documentation
for mapreduce for more information, including information on using it with Hadoop and MATLAB®

Parallel Server™.
Local Functions
Listed here are the local functions that mapreduce applies to the data.

function maxTimeMapper(data, ~, intermKVStore)
maxElapsedTime = max(data{:,:});
add(intermKVStore, "MaxElapsedTime", maxElapsedTime)
end

function maxTimeReducer(~, intermValsIter, outKVStore)
maxElapsedTime = -Inf;
while(hasnext(intermValsIter))
maxElapsedTime = max(maxElapsedTime, getnext(intermValsIter));

13-31

13 Large Data

end

add (outKVStore, "MaxElapsedTime", maxElapsedTime);
end
function countFlightsMapper(data, ~, intermKVStore)

dayNumber = days((datetime(data.Year, data.Month, data.DayofMonth) - datetime(1987,10,1)))+1;
daysSinceEpoch = days(datetime(2008,12,31) - datetime(1987,10,1))+1;
[airlineName, ~, airlineIndex] = unique(data.UniqueCarrier, 'stable');

for i = l:numel(airlineName)
dayTotals = accumarray(dayNumber(airlineIndex==1i), 1, [daysSinceEpoch, 1]);
add(intermKVStore, airlineName{i}, dayTotals);
end
end
function countFlightsReducer(intermKeysIn, intermValsIter, outKVStore)
daysSinceEpoch = days(datetime(2008,12,31) - datetime(1987,10,1))+1;
dayArray = zeros(daysSinceEpoch, 1);

while hasnext(intermValsIter)
dayArray = dayArray + getnext(intermValsIter);
end
add (outKVStore, intermKeysIn, dayArray);
end

See Also
mapreduce | tabularTextDatastore

More About

. “Getting Started with MapReduce” on page 13-3
. “Build Effective Algorithms with MapReduce” on page 13-18

13-32

Find Maximum Value with MapReduce

Find Maximum Value with MapReduce

This example shows how to find the maximum value of a single variable in a data set using
mapreduce. It demonstrates the simplest use of mapreduce since there is only one key and minimal
computation.

Prepare Data

Create a datastore using the airlinesmall. csv data set. This 12-megabyte data set contains 29
columns of flight information for several airline carriers, including arrival and departure times. In this
example, select ArrDelay (flight arrival delay) as the variable of interest.

ds = tabularTextDatastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.SelectedVariableNames = 'ArrDelay’;

The datastore treats 'NA' values as missing, and replaces the missing values with NaN values by
default. Additionally, the SelectedVariableNames property allows you to work with only the
selected variable of interest, which you can verify using preview.

preview(ds)

ans=8x1 table
ArrDelay

8
8
21
13
4
59
3
11

Run MapReduce

The mapreduce function requires a map function and a reduce function as inputs. The mapper
receives blocks of data and outputs intermediate results. The reducer reads the intermediate results
and produces a final result.

In this example, the mapper finds the maximum arrival delay in each block of data. The mapper then
stores these maximum values as the intermediate values associated with the key
'"PartialMaxArrivalDelay"’.

Display the map function file.

function maxArrivalDelayMapper (data, info, intermKVStore)
partMax = max(data.ArrDelay);
add(intermKVStore, 'PartialMaxArrivalDelay',partMax);
end

The reducer receives a list of the maximum arrival delays for each block and finds the overall
maximum arrival delay from the list of values. mapreduce only calls this reducer once, since the
mapper only adds a single unique key. The reducer uses add to add a final key-value pair to the
output.

13-33

13 Large Data

Display the reduce function file.

function maxArrivalDelayReducer(intermKey, intermVallter, outKVStore)
% intermKey is 'PartialMaxArrivalDelay'. intermVallIter is an iterator of
% all values that has the key 'PartialMaxArrivalDelay'.
maxVal = -Inf;
while hasnext(intermVallter)
maxVal = max(getnext(intermValIter), maxVal);
end
% The key-value pair added to outKVStore will become the output of mapreduce
add (outKVStore, 'MaxArrivalDelay',maxVal);
end

Use mapreduce to apply the map and reduce functions to the datastore, ds.

maxDelay = mapreduce(ds, @maxArrivalDelayMapper, @maxArrivalDelayReducer);

>k 3k 3k 3k 3k 3Kk ok ok ok ok 5k 5k 5k 5k 5k 5K 5K 5K 5K K K K >k >k >k >k kok kokok

* MAPREDUCE PROGRESS *
3k 5k 3k 3k 5k >k 3k 5k >k 3k 5k 3k 3k 5K 3k ok >k 3k ok 3k ko >k kook >k kok kokok >k
Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 100%

mapreduce returns a datastore, maxDelay, with files in the current folder.

Read the final result from the output datastore, maxDelay.
readall(maxDelay)

ans=1x2 table
Key Value

{'MaxArrivalDelay'} {[10141}

Local Functions

Listed here are the map and reduce functions that mapreduce applies to the data.

function maxArrivalDelayMapper (data, info, intermKVStore)
partMax = max(data.ArrDelay);
add(intermKVStore, 'PartialMaxArrivalDelay',partMax);
end

function maxArrivalDelayReducer(intermKey, intermVallter, outKVStore)
% intermKey is 'PartialMaxArrivalDelay'. intermVallter is an iterator of
% all values that has the key 'PartialMaxArrivalDelay’.
maxVal = -Inf;
while hasnext(intermVallter)
maxVal = max(getnext(intermValIter), maxVal);
end

13-34

Find Maximum Value with MapReduce

% The key-value pair added to outKVStore will become the output of mapreduce
add (outKVStore, 'MaxArrivalDelay',maxVal);

See Also
mapreduce | tabularTextDatastore

More About

. “Getting Started with MapReduce” on page 13-3
. “Build Effective Algorithms with MapReduce” on page 13-18

13-35

13 Large Data

Compute Mean Value with MapReduce

13-36

This example shows how to compute the mean of a single variable in a data set using mapreduce. It
demonstrates a simple use of mapreduce with one key, minimal computation, and an intermediate
state (accumulating intermediate sum and count).

Prepare Data

Create a datastore using the airlinesmall. csv data set. This 12-megabyte data set contains 29
columns of flight information for several airline carriers, including arrival and departure times. In this
example, select ArrDelay (flight arrival delay) as the variable of interest.

ds = tabularTextDatastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.SelectedVariableNames = 'ArrDelay’;

The datastore treats 'NA' values as missing, and replaces the missing values with NaN values by
default. Additionally, the SelectedVariableNames property allows you to work with only the
selected variable of interest, which you can verify using preview.

preview(ds)

ans=8x1 table
ArrDelay

8
8
21
13
4
59
3
11

Run MapReduce

The mapreduce function requires a map function and a reduce function as inputs. The mapper
receives blocks of data and outputs intermediate results. The reducer reads the intermediate results
and produces a final result.

In this example, the mapper finds the count and sum of the arrival delays in each block of data. The
mapper then stores these values as the intermediate values associated with the key
"PartialCountSumDelay".

Display the map function file.

function meanArrivalDelayMapper (data, info, intermKVStore)
% Data is an n-by-1 table of the ArrDelay. Remove missing values first:
data(isnan(data.ArrDelay),:) = [];

% Record the partial counts and sums and the reducer will accumulate them.
partCountSum = [length(data.ArrDelay), sum(data.ArrDelay)];
add(intermKVStore, "PartialCountSumDelay",partCountSum);

end

Compute Mean Value with MapReduce

The reducer accepts the count and sum for each block stored by the mapper. It sums up the values to
obtain the total count and total sum. The overall mean arrival delay is a simple division of the values.
mapreduce only calls this reducer once, since the mapper only adds a single unique key. The reducer
uses add to add a single key-value pair to the output.

Display the reduce function file.

function meanArrivalDelayReducer(intermKey, intermValIter, outKVStore)
count = 0;
sum = 0;
while hasnext(intermVallter)
countSum = getnext(intermVallter);
count = count + countSum(1l);
sum = sum + countSum(2);
end
meanDelay = sum/count;

% The key-value pair added to outKVStore will become the output of mapreduce
add (outKVStore, "MeanArrivalDelay",meanDelay) ;
end

Use mapreduce to apply the map and reduce functions to the datastore, ds.

meanDelay = mapreduce(ds, @meanArrivalDelayMapper, @meanArrivalDelayReducer);

>k 3k 3k 3k 3ko3kook Sk Sk Sk Sk Sk 5k 5k 5K 5K 3K 5K 3K 3K K K K K >k >k >k kkokokok

* MAPREDUCE PROGRESS *
3k 3k 3k 3k 5k 3k 3k 5k >k 3k 3k 3k 3k 3K 3k Sk 3k >kok 3k kook >k kook >k kok kok ok k
Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 100%

mapreduce returns a datastore, meanDelay, with files in the current folder.
Read the final result from the output datastore, meanDelay.

readall(meanDelay)

ans=1x2 table
Key Value

{'MeanArrivalDelay'} {[7.12011}

Local Functions

Listed here are the map and reduce functions that mapreduce applies to the data.
function meanArrivalDelayMapper (data, info, intermKVStore)

% Data is an n-by-1 table of the ArrDelay. Remove missing values first:
data(isnan(data.ArrDelay),:) = [];

13-37

13 Large Data

% Record the partial counts and sums and the reducer will accumulate them.
partCountSum = [length(data.ArrDelay), sum(data.ArrDelay)];
add(intermKVStore, "PartialCountSumDelay",partCountSum);

end

function meanArrivalDelayReducer(intermKey, intermVallter, outKVStore)
count = 0;
sum = 0;
while hasnext(intermVallter)
countSum = getnext(intermVallter);
count = count + countSum(1);
sum = sum + countSum(2);
end
meanDelay = sum/count;

% The key-value pair added to outKVStore will become the output of mapreduce
add (outKVStore, "MeanArrivalDelay",meanDelay);

See Also
mapreduce | tabularTextDatastore

More About

. “Getting Started with MapReduce” on page 13-3
. “Build Effective Algorithms with MapReduce” on page 13-18

13-38

Compute Mean by Group Using MapReduce

Compute Mean by Group Using MapReduce

This example shows how to compute the mean by group in a data set using mapreduce. It
demonstrates how to do computations on subgroups of data.

Prepare Data

Create a datastore using the airlinesmall. csv data set. This 12-megabyte data set contains 29
columns of flight information for several airline carriers, including arrival and departure times. In this
example, select DayOfWeek and ArrDelay (flight arrival delay) as the variables of interest.

ds = tabularTextDatastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.SelectedVariableNames = {'ArrDelay', 'DayOfWeek'};

The datastore treats 'NA' values as missing, and replaces the missing values with NaN values by
default. Additionally, the SelectedVariableNames property allows you to work with only the
selected variables of interest, which you can verify using preview.

preview(ds)

ans=8x2 table
ArrDelay DayOfWeek

8
8
21
13
4
59
3
11

O WPrAUUREW

Run MapReduce

The mapreduce function requires a map function and a reduce function as inputs. The mapper
receives blocks of data and outputs intermediate results. The reducer reads the intermediate results
and produces a final result.

In this example, the mapper computes the count and sum of delays by the day of week in each block
of data, and then stores the results as intermediate key-value pairs. The keys are integers (1 to 7)
representing the days of the week and the values are two-element vectors representing the count and
sum of the delay of each day.

Display the map function file.

function meanArrivalDelayByDayMapper(data, ~, intermKVStore)
% Data is an n-by-2 table: first column is the DayOfWeek and the second
% 1is the ArrDelay. Remove missing values first.
delays = data.ArrDelay;
day = data.DayOfWeek;
notNaN = ~isnan(delays);
day = day(notNaN);
delays = delays(notNaN);

13-39

13 Large Data

13-40

% find the unique days in this chunk
[intermKeys,~,idx] = unique(day, 'stable');

% group delays by idx and apply @grpstatsfun function to each group
intermVals = accumarray(idx,delays,size(intermKeys),@countsum);
addmulti(intermKVStore, intermKeys,intermvVals);

function out = countsum(x)
n = length(x); % count
s = sum(x); % mean
out = {[n, sl};
end
end

After the Map phase, mapreduce groups the intermediate key-value pairs by unique key (in this case,
day of the week). Thus, each call to the reducer works on the values associated with one day of the
week. The reducer receives a list of the intermediate count and sum of delays for the day specified by
the input key (intermKey) and sums up the values into the total count, n and total sum s. Then, the
reducer calculates the overall mean, and adds one final key-value pair to the output. This key-value
pair represents the mean flight arrival delay for one day of the week.

Display the reduce function file.

function meanArrivalDelayByDayReducer(intermKey, intermValIter, outKVStore)
n

% get all sets of intermediate results
while hasnext(intermVallter)
intermValue = getnext(intermVallter);

n=n+ intermvalue(1);
s = s + intermValue(2);
end

% accumulate the sum and count
mean = s/n;
% add results to the output datastore
add (outKVStore,intermKey,mean);
end

Use mapreduce to apply the map and reduce functions to the datastore, ds.

meanDelayByDay = mapreduce(ds, @meanArrivalDelayByDayMapper,
@meanArrivalDelayByDayReducer);

>k 3k 3k k3K 3kook Sk ok Sk Sk Sk 5k 5k 5k 5K 3K 5K 5K 3K K K K K >k >k >k >k ok kok ok

* MAPREDUCE PROGRESS *
3k 5k 3k 3k 5k 3k 3k 5k >k 3k 3k 3k 3k 3K 3k ok 3k 3k Sk 3k kook >k kook >k kok kokok >k
Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 14%
Map 100% Reduce 29%

Compute Mean by Group Using MapReduce

Map 100% Reduce 43%
Map 100% Reduce 57%
Map 100% Reduce 71%
Map 100% Reduce 86%
Map 100% Reduce 100%

mapreduce returns a datastore, meanDelayByDay, with files in the current folder.

Read the final result from the output datastore, meanDelayByDay.
result = readall(meanDelayByDay)

result=7x2 table
Key Value

{[7.0038]}
{[7.0833]1}
{[9.4193]}
{[9.3185]}
{[4.2095]}
{[5.8569]1}
{[6.5241]}

~NNOPRAOTEE W

Organize Results

The integer keys (1 to 7) represent the days of the week. To organize the results more, convert the
keys to a categorical array, retrieve the numeric values from the single element cells, and rename the
variable names of the resulting table.

result.Key = categorical(result.Key, 1:7,

{'Mon', 'Tue', 'Wed', 'Thu','Fri','Sat"', 'Sun'});
result.Value = cell2mat(result.Value);
result.Properties.VariableNames = {'DayOfWeek', 'MeanArrDelay'}

result=7x2 table
DayOfWeek MeanArrDelay

Wed 7.0038
Mon 7.0833
Fri 9.4193
Thu 9.3185
Sat 4.2095
Tue 5.8569
Sun 6.5241

Sort the rows of the table by mean flight arrival delay. This reveals that Saturday is the best day of
the week to travel, whereas Friday is the worst.

result = sortrows(result, 'MeanArrDelay')

result=7x2 table
DayOfWeek MeanArrDelay

Sat 4.2095

13-41

13 Large Data

Tue 5.8569
Sun 6.5241
Wed 7.0038
Mon 7.0833
Thu 9.3185
Fri 9.4193

Local Functions

Listed here are the map and reduce functions that mapreduce applies to the data.

function meanArrivalDelayByDayMapper(data, ~, intermKVStore)
% Data is an n-by-2 table: first column is the DayOfWeek and the second
% is the ArrDelay. Remove missing values first.
delays = data.ArrDelay;
day = data.DayOfWeek;
notNaN = ~isnan(delays);
day = day(notNaN);
delays = delays(notNaN);

% find the unique days in this chunk
[intermKeys,~,idx] = unique(day, 'stable');

% group delays by idx and apply @grpstatsfun function to each group
intermVals = accumarray(idx,delays,size(intermKeys),@countsum);
addmulti(intermKVStore,intermKeys,intermVals);

function out = countsum(x)
n = length(x); % count
s = sum(x); % mean
out = {[n, sl]};
end
end

== mmmm e -

function meanArrivalDelayByDayReducer(intermKey, intermVallter, outKVStore)
n=2~0;
s 0;

% get all sets of intermediate results
while hasnext(intermVallter)
intermValue = getnext(intermVallter);

n =n + intermValue(1l);
s = s + intermvValue(2);
end

% accumulate the sum and count
mean = s/n;
% add results to the output datastore
add (outKVStore,intermKey,mean) ;
end

I I T T T T T T e T T

See Also
mapreduce | tabularTextDatastore

13-42

Compute Mean by Group Using MapReduce

More About

. “Getting Started with MapReduce” on page 13-3
. “Build Effective Algorithms with MapReduce” on page 13-18

13-43

13 Large Data

Create Histograms Using MapReduce

13-44

This example shows how to visualize patterns in a large data set without having to load all of the
observations into memory simultaneously. It demonstrates how to compute lower volume summaries
of the data that are sufficient to generate a graphic.

Histograms are a common visualization technique that give an empirical estimate of the probability
density function (pdf) of a variable. Histograms are well-suited to a big data environment, because
they can reduce the size of raw input data to a vector of counts. Each count is the number of
observations that falls within each of a set of contiguous, numeric intervals or bins.

The mapreduce function computes counts separately on multiple blocks of the data. Then
mapreduce sums the counts from all blocks. The map function and reduce function are both
extremely simple in this example. Nevertheless, you can build flexible visualizations with the
summary information that they collect.

Prepare Data

Create a datastore using the airlinesmall. csv data set. This 12-megabyte data set contains 29
columns of flight information for several airline carriers, including arrival and departure times. In this
example, select ArrDelay (flight arrival delay) as the variable of interest.

ds = tabularTextDatastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.SelectedVariableNames = 'ArrDelay';

The datastore treats 'NA' values as missing, and replaces the missing values with NaN values by
default. Additionally, the SelectedVariableNames property allows you to work with only the
selected variable of interest, which you can verify using preview.

preview(ds)

ans=8x1 table
ArrDelay

13
4
59
3
11

Run MapReduce

The mapreduce function requires a map function and a reduce function as inputs. The mapper
receives blocks of data and outputs intermediate results. The reducer reads the intermediate results
and produces a final result.

In this example, the mapper collects the counts of flights with various amounts of arrival delay by
accumulating the arrival delays into bins. The bins are defined by the fourth input argument to the
map function, edges.

Create Histograms Using MapReduce

Display the map function file.

function visualizationMapper(data, ~, intermKVStore, edges)
% Count how many flights have arrival delay in each interval specified by
% the EDGES vector, and add these counts to INTERMKVSTORE.
counts = histc(data.ArrDelay, edges);
add(intermKVStore, 'Null', counts);
end

The bin size of the histogram is important. Bins that are too wide can obscure important details in the
data set. Bins that are too narrow can lead to a noisy histogram. When working with very large data
sets, it is best to avoid making multiple passes over the data to try out different bin widths. A simple
way to avoid making multiple passes is to collect counts with bins that are narrow. Then, to get wider
bins, you can aggregate adjacent bin counts without reprocessing the raw data. The flight arrival
delays are reported in 1-minute increments, so define 1-minute bins from -60 minutes to 599 minutes.

edges = -60:599;

Create an anonymous function to configure the map function to use the bin edges. The anonymous
function allows you to specialize the map function by specifying a particular value for its fourth input
argument. Then, you can call the map function via the anonymous function, using only the three input
arguments that the mapreduce function expects.

ourVisualizationMapper = ...
@(data, info, intermKVstore) visualizationMapper(data, info, intermKVstore, edges);

Display the reduce function file. The reducer sums the counts stored by the mapper.

function visualizationReducer(~, intermValList, outKVStore)
if hasnext(intermValList)
outVal = getnext(intermValList);
else
outVal = [];
end
while hasnext(intermVallList)
outVal = outVal + getnext(intermVallList);
end
add (outKVStore, 'Null', outVal);
end

Use mapreduce to apply the map and reduce functions to the datastore, ds.

result = mapreduce(ds, ourVisualizationMapper, @visualizationReducer);

>k 3k 3k 3k 3ko3kook SkoSk Sk Sk Sk 5k 5k 5k 5K 3K 5K 5K 3K K K K K Kk >k kokokok sk

* MAPREDUCE PROGRESS *
3k 3k 3k 3k 5k >k 3k 5k >k 3k 3k 3k 3k 3k >k ok ok 3k ok 3k kook >k kook >k kok kokok >k
Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 100%

mapreduce returns an output datastore, result, with files in the current folder.

13-45

13 Large Data

Organize Results
Read the final bin count results from the output datastore.

r = readall(result);
counts = r.Value{1l};

Visualize Results

Plot the raw bin counts using the whole range of the data (apart from a few outliers excluded by the
mapper).

bar(edges, counts, 'hist');
title('Distribution of Flight Delay')
xlabel('Arrival Delay (min)"')
ylabel('Flight Counts')

Distribution of Flight Delay
EDDD T T T T T

5000

4000

3000

Flight Counts

2000

1000

0
-100 0 100 200 300 400 500 600
Arrival Delay (min)

The histogram has long tails. Look at a restricted bin range to better visualize the delay distribution
of the majority of flights. Zooming in a bit reveals there is a reporting artifact; it is common to round
delays to 5-minute increments.

x1lim([-50,50]);

grid on
grid minor

13-46

Create Histograms Using MapReduce

6000

5000

4000

3000

Flight Counts

2000

1000

0
S0 40 =300 -20 -10 0 10 20 30 40 50
Arrival Delay (min)

Smooth the counts with a moving average filter to remove the 5-minute recording artifact.

smoothCounts = filter((1/5)*ones(1,5), 1, counts);
figure

bar(edges, smoothCounts, 'hist')

x1im([-50,50]);

title('Distribution of Flight Delay')
xlabel('Arrival Delay (min)"')

ylabel('Flight Counts"')

grid on

grid minor

13-47

13 Large Data

13-48

4500

4000

3500

3000

2500

2000

Flight Counts

1500

1000

500

0
S0 40 =30 -20 -10 0 10 20 30 40 50
Arrival Delay (min)

To give the graphic a better balance, do not display the top 1% of most-delayed flights. You can tailor
the visualization in many ways without reprocessing the complete data set, assuming that you
collected the appropriate information during the full pass through the data.

empiricalCDF = cumsum(counts);

empiricalCDF = empiricalCDF / empiricalCDF(end);
quartile99 = find(empiricalCDF>0.99, 1, 'first');
low99 = 1l:quartile99;

figure
empiricalPDF = smoothCounts(low99) / sum(smoothCounts);
bar(edges(low99), empiricalPDF, 'hist');

xlim([-60,edges(quartile99)]);
ylim([0, max(empiricalPDF)*1.05]);
title('Distribution of Flight Delay')
xlabel('Arrival Delay (min)"')
ylabel('Probability Density"')

Create Histograms Using MapReduce

Distribution of Flight Delay

0.035

0.03

0.025

0.02

0.015

Probability Density

0.01

0.005

60 -40 =20 0 20 40 60 80 100 120
Arrival Delay (min)

Local Functions

Listed here are the map and reduce functions that mapreduce applies to the data.

function visualizationMapper(data, ~, intermKVStore, edges)

% Count how many flights have arrival delay in each interval specified by
the EDGES vector, and add these counts to INTERMKVSTORE.

counts = histc(data.ArrDelay, edges);

add(intermKVStore, 'Null', counts);
end

o°

function visualizationReducer(~, intermVallList, outKVStore)
if hasnext(intermVallList)
outVal = getnext(intermValList);
else
outVal = [];
end
while hasnext(intermValList)
outVal = outVal + getnext(intermVallList);
end
add (outkKVStore, 'Null', outVal);
end

See Also
mapreduce | tabularTextDatastore

13-49

13 Large Data

More About

. “Getting Started with MapReduce” on page 13-3
. “Build Effective Algorithms with MapReduce” on page 13-18

13-50

Simple Data Subsetting Using MapReduce

Simple Data Subsetting Using MapReduce

This example shows how to extract a subset of a large data set.

There are two aspects of subsetting, or performing a query. One is selecting a subset of the variables
(columns) in the data set. The other is selecting a subset of the observations, or rows.

In this example, the selection of variables takes place in the definition of the datastore. (The map
function could perform a further sub-selection of variables, but that is not within the scope of this
example). In this example, the role of the map function is to perform the selection of observations.
The role of the reduce function is to concatenate the subsetted records extracted by each call to the
map function. This approach assumes that the data set can fit in memory after the Map phase.

Prepare Data

Create a datastore using the airlinesmall. csv data set. This 12-megabyte data set contains 29
columns of flight information for several airline carriers, including arrival and departure times. This
example uses 15 variables out of the 29 variables available in the data.

ds = tabularTextDatastore('airlinesmall.csv', 'TreatAsMissing', 'NA');

ds.SelectedVariableNames = ds.VariableNames([1 2 5 9 12 13 15 16 17 ...
18 20 21 25 26 271);

ds.SelectedVariableNames

ans = 1x15 cell
Columns 1 through 4

{'Year'} {'Month"'} {'DepTime'} {'UniqueCarrier'}
Columns 5 through 8

{'ActualElapsedTime'} {'CRSElapsedTime'} {'ArrDelay'} {'DepDelay'}
Columns 9 through 13

{'Origin'} {'Dest'} {'TaxiIn'} {'TaxiOut'} {'CarrierDelay'}
Columns 14 through 15

{'WeatherDelay'} {'NASDelay'}

The datastore treats 'NA' values as missing, and replaces the missing values with NaN values by
default. Additionally, the SelectedVariableNames property allows you to work with only the
specified variables of interest, which you can verify using preview.

preview(ds)

ans=8x15 table
Year Month DepTime UniqueCarrier ActualElapsedTime CRSElapsedTime ArrDelay

1987 10 642 {'PS'} 53 57 8
1987 10 1021 {'PS'} 63 56 8
1987 10 2055 {'PS'} 83 82 21
1987 10 1332 {'PS'} 59 58 13

13-51

13 Large Data

13-52

1987 10 629 {'PS'} 77 72
1987 10 1446 {'PS'} 61 65
1987 10 928 {'PS'} 84 79
1987 10 859 {'PS'} 155 143

Run MapReduce

The mapreduce function requires a map function and a reduce function as inputs. The mapper
receives blocks of data and outputs intermediate results. The reducer reads the intermediate results
and produces a final result.

In this example, the mapper receives a table with the variables described by the
SelectedVariableNames property in the datastore. Then, the mapper extracts flights that had a
high amount of delay after pushback from the gate. Specifically, it identifies flights with a duration
exceeding 2.5 times the length of the scheduled duration. The mapper ignores flights prior to 1995,
because some of the variables of interest for this example were not collected before that year.

Display the map function file.

function subsettingMapper(data, ~, intermKVStore)
% Select flights from 1995 and later that had exceptionally long
% elapsed flight times (including both time on the tarmac and time in
% the air).
idx = data.Year > 1994 & (data.ActualElapsedTime - data.CRSElapsedTime)...
> 1.50 * data.CRSElapsedTime;
intermVal = data(idx,:);

add(intermKVStore, 'Null',intermVal);
end

The reducer receives the subsetted observations obtained from the mapper and simply concatenates
them into a single table. The reducer returns one key (which is relatively meaningless) and one value
(the concatenated table).

Display the reduce function file.

function subsettingReducer(~, intermVallList, outKVStore)
% get all intermediate results from the list
outVal = {};

while hasnext(intermValList)
outVal = [outVal; getnext(intermVallList)];
end
% Note that this approach assumes the concatenated intermediate values (the
% subset of the whole data) fit in memory.

add (outkKVStore, 'Null', outVal);
end

Use mapreduce to apply the map and reduce functions to the datastore, ds.

result = mapreduce(ds, @subsettingMapper, @subsettingReducer);

>k 3k 3k 3k 3ko3kook ok Sk Sk Sk Sk 5k 5k 5k 5K 3K 5K 5K 3K K K K K >k >k >k >k kkok sk

* MAPREDUCE PROGRESS *

>k 3k 3k 3k 3ko3kook ok Sk Sk Sk Sk 5k 5k 5k 5K 3K 5K 5K 3K K K Kk K >k >k >k k kok sk

Map 0% Reduce 0%

59

11

Simple Data Subsetting Using MapReduce

Map 16% Reduce
Map 32% Reduce
Map 48% Reduce
Map 65% Reduce
Map 81% Reduce
Map 97% Reduce
Map 100% Reduce

0
0
0
0
0
0
0
Map 100% Reduce 100

0° 0% 0% 0° 0% o° o° o°

mapreduce returns an output datastore, result, with files in the current folder.

Display Results

Look for patterns in the first 10 variables that were pulled from the data set. These variables identify
the airline, the destination, and the arrival airports, as well as some basic delay information.

r = readall(result);
tbl = r.Value{l};
tbl(:,1:10)

ans=37x10 table
Year Month DepTime UniqueCarrier ActualElapsedTime CRSElapsedTime ArrDelay

1995 6 1601 {'US"'} 162 58 118
1996 6 1834 {'C0"} 241 75 220
1997 1 730 {'DL"} 110 43 137
1997 4 1715 {'UA"} 152 57 243
1997 9 2232 {'NW"} 143 50 115
1997 10 1419 {'C0"} 196 58 157
1998 3 2156 {'DL"} 139 49 146
1998 10 1803 {'NW"} 291 81 213
2000 5 830 {'WN"} 140 55 85
2000 8 1630 {'C0"} 357 123 244
2002 6 1759 {'US"'} 260 67 192
2003 3 1214 {'XE"} 214 84 124
2003 3 604 {'XE"} 175 60 114
2003 4 1556 {'MQ"} 142 52 182
2003 5 1954 {'US"'} 127 48 78

7 1250 {'FL"} 261 95 166

2003

Looking at the first record, a U.S. Air flight departed the gate 14 minutes after its scheduled
departure time and arrived 118 minutes late. The flight experienced a delay of 104 minutes after
pushback from the gate which is the difference between ActualElapsedTime and
CRSElapsedTime.

There is one anomalous record. In February of 2006, a JetBlue flight had a departure time of 3:24
a.m. and an elapsed flight time of 1650 minutes, but an arrival delay of only 415 minutes. This might
be a data entry error.

Otherwise, there are no clear cut patterns concerning when and where these exceptionally delayed

flights occur. No airline, time of year, time of day, or single airport dominates. Some intuitive
patterns, such as O'Hare (ORD) in the winter months, are certainly present.

13-53

13 Large Data

Delay Patterns

Beginning in 1995, the airline system performance data began including measurements of how much
delay took place in the taxi phases of a flight. Then, in 2003, the data also began to include certain
causes of delay.

Examine these two variables in closer detail.
tbl(:,[1,7,8,11:end])

ans=37x8 table
Year ArrDelay DepDelay Taxiln TaxiOut CarrierDelay WeatherDelay NASDela

1995 118 14 7 101 NaN NaN NaN
1996 220 54 12 180 NaN NaN NaN
1997 137 70 2 12 NaN NaN NaN
1997 243 148 4 38 NaN NaN NaN
1997 115 22 4 98 NaN NaN NaN
1997 157 19 6 95 NaN NaN NaN
1998 146 56 9 47 NaN NaN NaN
1998 213 3 11 205 NaN NaN NaN
2000 85 0 5 51 NaN NaN NaN
2000 244 10 4 273 NaN NaN NaN
2002 192 -1 6 217 NaN NaN NaN
2003 124 -6 13 131 NaN NaN NaN
2003 114 -1 8 106 NaN NaN NaN
2003 182 92 9 106 NaN NaN NaN
2003 78 -1 5 90 NaN NaN NaN

11 170 0 0 166

2003 166 0

For these exceptionally delayed flights, the great majority of delay occurs during taxi out, on the
tarmac. Moreover, the major cause of the delay is NASDelay. NAS delays are holds imposed by the
national aviation authorities on departures headed for an airport that is forecast to be unable to
handle all scheduled arrivals at the time the flight is scheduled to arrive. NAS delay programs in
effect at any given time are posted at https://nasstatus.faa.gov/.

Preferably, when NAS delays are imposed, boarding of the aircraft is simply delayed. Such a delay
would show up as a departure delay. However, for most of the flights selected for this example, the
delays took place largely after departure from the gate, leading to a taxi delay.

Rerun MapReduce

The previous map function had the subsetting criteria hard-wired in the function file. A new map
function would have to be written for any new query, such as flights departing San Francisco on a
given day.

A generic mapper can be more adaptive by separating out the subsetting criteria from the map
function definition and using an anonymous function to configure the mapper for each query. This
generic mapper uses a fourth input argument that supplies the desired query variable.

Display the generic map function file.

function subsettingMapperGeneric(data, ~, intermKVStore, subsetter)
intermKey = 'Null';

13-54

https://nasstatus.faa.gov/

Simple Data Subsetting Using MapReduce

intermVal = data(subsetter(data), :);
add(intermKVStore,intermKey,intermVal);
end

Create an anonymous function that performs the same selection of rows that is hard-coded in
subsettingMapper.

inFlightDelayl50percent = ...
@(data) data.Year > 1994 & ...
(data.ActualElapsedTime-data.CRSElapsedTime) > 1.50*data.CRSElapsedTime;

Since the mapreduce function requires the map and reduce functions to accept exactly three inputs,
use another anonymous function to specify the fourth input to the mapper,
subsettingMapperGeneric. Subsequently, you can use this anonymous function to call
subsettingMapperGeneric using only three arguments (the fourth is implicit).

configuredMapper = ...
@(data, info, intermKVStore) subsettingMapperGeneric(data, info,
intermKVStore, inFlightDelayl50percent);

Use mapreduce to apply the generic map function to the input datastore.

result2 = mapreduce(ds, configuredMapper, @subsettingReducer);

>k 3k 3k 3k 3ko3kook Sk ok Sk ok Sk 5k 5k 5k 5K 3K 5K 3K 3K K K Kk K >k >k >k kokok sk

* MAPREDUCE PROGRESS *
3k 5k 3k 3k 5k 3k 3k 5k 3k 3k 3k 3k 3k 3K 3k Sk 3k 3k Sk 3k kook >k kook >k kok kokok >k
Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 100%

mapreduce returns an output datastore, result2, with files in the current folder.
Verify Results
Confirm that the generic mapper gets the same result as with the hard-wired subsetting logic.

r2 = readall(result2);
tb12 = r2.Value{l};

if isequaln(tbl, tbl2)

disp('Same results with the configurable mapper.')
else

disp('Oops, back to the drawing board.')
end

Same results with the configurable mapper.
Local Functions
Listed here are the map and reduce functions that mapreduce applies to the data.

function subsettingMapper(data, ~, intermKVStore)
% Select flights from 1995 and later that had exceptionally long

13-55

13 Large Data

% elapsed flight times (including both time on the tarmac and time in

% the air).

idx = data.Year > 1994 & (data.ActualElapsedTime - data.CRSElapsedTime)...
> 1.50 * data.CRSElapsedTime;

intermVal = data(idx,:);

add(intermKVStore, 'Null',intermVal);
end

function subsettingReducer(~, intermVallList, outKVStore)
% get all intermediate results from the list
outval = {};

while hasnext(intermValList)
outVal = [outVal; getnext(intermVallList)];
end

% Note that this approach assumes the concatenated intermediate values (the
% subset of the whole data) fit in memory.

add (outKVStore, 'Null', outVal);

function subsettingMapperGeneric(data, ~, intermKVStore, subsetter)
intermKey = 'Null';
intermVal = data(subsetter(data), :);
add(intermKVStore, intermKey,intermVal);

end

See Also
mapreduce | tabularTextDatastore

More About

. “Getting Started with MapReduce” on page 13-3
. “Build Effective Algorithms with MapReduce” on page 13-18

13-56

Using MapReduce to Compute Covariance and Related Quantities

Using MapReduce to Compute Covariance and Related
Quantities

This example shows how to compute the mean and covariance for several variables in a large data set
using mapreduce. It then uses the covariance to perform several follow-up calculations that do not
require another iteration over the entire data set.

Prepare Data

Create a datastore using the airlinesmall. csv data set. This 12-megabyte data set contains 29
columns of flight information for several airline carriers, including arrival and departure times. In this
example, select ActualElapsedTime (total flight time), Distance (total flight distance), DepDelay
(flight departure delay), and ArrDelay (flight arrival delay) as the variables of interest.

ds = tabularTextDatastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.SelectedVariableNames = {'ActualElapsedTime', 'Distance’,
'DepDelay', 'ArrDelay'};

The datastore treats 'NA' values as missing, and replaces the missing values with NaN values by
default. Additionally, the SelectedVariableNames property allows you to work with only the
selected variables of interest, which you can verify using preview.

preview(ds)

ans=8x4 table
ActualElapsedTime Distance DepDelay ArrDelay

53 308 12 8
63 296 1 8
83 480 20 21
59 296 12 13
77 373 -1 4
61 308 63 59
84 447 -2 3
155 954 -1 11

Run MapReduce

The mapreduce function requires a map function and a reduce function as inputs. The mapper
receives blocks of data and outputs intermediate results. The reducer reads the intermediate results
and produces a final result.

In this example, the mapper computes the count, mean, and covariance for the variables in each
block of data in the datastore, ds. Then, the mapper stores the computed values for each block as an
intermediate key-value pair consisting of a single key with a cell array containing the three computed
values.

Display the map function file.

function covarianceMapper(t,~,intermKVStore)
% Get data from input table and remove any rows with missing values
t{:,:}

X(~any(isnan(x),2),:);

X
X

13-57

13 Large Data

13-58

o°

Compute and save the count, mean, and covariance
= size(x,1);
= mean(x,1);
cov(x,1);

0 35
|

o°

Store values as a single item in the intermediate key/value store
add(intermKVStore, 'key',{n m c})
end

The reducer combines the intermediate results for each block to obtain the count, mean, and
covariance for each variable of interest in the entire data set. The reducer stores the final key-value
pairs for the keys 'count', 'mean', and 'cov' with the corresponding values for each variable.

Display the reduce function file.

function covarianceReducer(~,intermValIter,outKVStore)
% We will combine results computed in the mapper for different chunks of
% the data, updating the count, mean, and covariance each time we add a new
% chunk.

% First, initialize everything to zero (scalar 0 is okay)
nl = 0; % no rows so far

ml = 0; % mean so far

cl = 0; % covariance so far

while hasnext(intermValIter)
% Get the next chunk, and extract the count, mean, and covariance
t = getnext(intermVallter);

n2 = t{1};

m2 = t{2};

c2 = t{3};

% Use weighting formulas to update the values so far
n = nl+n2; % new count

m = (n1*ml + n2*m2) / n; % new mean

New covariance is a weighted combination of the two covariance, plus
additional terms that relate to the difference in means
cl = (n1*cl + n2*c2 + n1*(ml-m)'*(ml-m) + n2*(m2-m)'*(m2-m))/ n;

o° of

% Store the new mean and count for the next iteration
ml = m;
nl = n;

end

% Save results in the output key/value store
add (outKVStore, 'count',nl);
add (outKVStore, 'mean',ml);
add (outKVStore, 'cov',cl);
end

Use mapreduce to apply the map and reduce functions to the datastore, ds.

outds = mapreduce(ds, @covarianceMapper, @covarianceReducer);

>k 3k 3k 3k 3ko3kook Sk Sk Sk Sk Sk 5k 5k 5k 5K 3K 5K 5K 3K K K K K >k >k >k >k kokok sk

* MAPREDUCE PROGRESS *

Using MapReduce to Compute Covariance and Related Quantities

3k 5k 3k 3k 5k 3k 3k 5k >k 3k 5k 3k 3k 3K 3k 3k 3k 3Kk 3k kook >k kook >k kok kokok >k
Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 100%

mapreduce returns a datastore, outds, with files in the current folder.

View the results of the mapreduce call by using the readall function on the output datastore.
results = readall(outds)

results=3x2 table
Key Value

{'count'} {I 1206641}
{'mean' } {[120.2452 703.3926 8.1334 7.1235]}
{'cov' } {4x4 double }

Count = results.Value{l};
MeanVal = results.Value{2};
Covariance = results.Value{3};

Compute Correlation Matrix

The covariance, mean, and count values are useful to perform further calculations. Compute a
correlation matrix by finding the standard deviations and normalizing them to correlation form.

s = sqrt(diag(Covariance));
Correlation = Covariance ./ (s*s')

Correlation = 4x4

1.0000 0.9666 0.0278 0.0902
0.9666 1.0000 0.0216 0.0013
0.0278 0.0216 1.0000 0.8748
0.0902 0.0013 0.8748 1.0000

The elapsed time (first column) and distance (second column) are highly correlated, since
Correlation(2,1) = 0.9666. The departure delay (third column) and arrival delay (fourth
column) are also highly correlated, since Correlation(4,3) = 0.8748.

Compute Regression Coefficients

Compute some regression coefficients to predict the arrival delay, ArrDelay, using the other three
variables as predictors.

slopes = Covariance(1:3,1:3)\Covariance(1:3,4);

intercept = MeanVal(4) - MeanVal(l:3)*slopes;

b = table([intercept; slopes], 'VariableNames', {'Estimate'}, ...
'RowNames', {'Intercept', 'ActualElapsedTime', 'Distance', 'DepDelay'})

13-59

13 Large Data

b=4x1 table
Estimate
Intercept -19.912
ActualElapsedTime 0.56278
Distance -0.068721
DepDelay 0.94689

Perform PCA

Use svd to perform PCA (principal components analysis). PCA is a technique for finding a lower
dimensional summary of a data set. The following calculation is a simplified version of PCA, but more
options are available from the pca and pcacov functions in Statistics and Machine Learning
Toolbox™.

You can carry out PCA using either the covariance or correlation. In this case, use the correlation
since the difference in scale of the variables is large. The first two components capture most of the
variance.

[~,latent,pcacoef] = svd(Correlation);
latent = diag(latent)

latent = 4x1

2.0052
1.8376
0.1407
0.0164

Display the coefficient matrix. Each column of the coefficients matrix describes how one component is
defined as a linear combination of the standardized original variables. The first component is mostly
an average of the first two variables, with some additional contribution from the other variables.
Similarly, the second component is mostly an average of the last two variables.

pcacoef

pcacoef = 4x4

-0.6291 0.3222 -0.2444 -0.6638
-0.6125 0.3548 0.2591 0.6572
-0.3313 -0.6244 0.6673 -0.2348
-0.3455 -0.6168 -0.6541 0.2689

Local Functions

Listed here are the map and reduce functions that mapreduce applies to the data.

function covarianceMapper(t,~,intermKVStore)
% Get data from input table and remove any rows with missing values
t{:,:}

X (~any(isnan(x),2),:);

X X
o

o°

Compute and save the count, mean, and covariance
n = size(x,1);

13-60

Using MapReduce to Compute Covariance and Related Quantities

mean(x,1);
cov(x,1);

% Store values as a single item in the intermediate key/value store
add(intermKVStore, 'key',{n m c})

function covarianceReducer(~,intermVallter,outKVStore)
% We will combine results computed in the mapper for different chunks of
% the data, updating the count, mean, and covariance each time we add a new
% chunk.

o°
-n
5
+
-
>
-
+
'—J.
Q
—
-
N
(0]
0]
<
(0]
i}
<
+
>
'—J.
>
(e}
—+
o
N
(0]
)
o
—_
(%]
(@]
Q
—
Q
]
(o]
-
(9]
o
>~
Q
<
-

ml

1
nl =
cl =

o° o o°
3
D
Q
-
(%2}
o
—
Q
3

while hasnext(intermVallter)
% Get the next chunk, and extract the count, mean, and covariance
t = getnext(intermVallter);

n2 = t{1};

m2 = t{2};

c2 = t{3};

% Use weighting formulas to update the values so far
n = nl+n2; % new count

m = (nl*ml + n2*m2) / n; % new mean

% New covariance is a weighted combination of the two covariance, plus
% additional terms that relate to the difference in means
cl = (n1*cl + n2*c2 + nl*(ml-m)'*(ml-m) + n2*(m2-m)'*(m2-m))/ n;

% Store the new mean and count for the next iteration
ml = m;
nl = n;

end

% Save results in the output key/value store
add (outkKVStore, 'count',nl);
add (outkKVStore, 'mean',ml);
add (outKVStore, 'cov',cl);
end

See Also
mapreduce | tabularTextDatastore

More About

. “Getting Started with MapReduce” on page 13-3
. “Build Effective Algorithms with MapReduce” on page 13-18

13-61

13 Large Data

Compute Summary Statistics by Group Using MapReduce

13-62

This example shows how to compute summary statistics organized by group using mapreduce. It
demonstrates the use of an anonymous function to pass an extra grouping parameter to a
parameterized map function. This parameterization allows you to quickly recalculate the statistics
using a different grouping variable.

Prepare Data

Create a datastore using the airlinesmall. csv data set. This 12-megabyte data set contains 29
columns of flight information for several airline carriers, including arrival and departure times. For
this example, select Month, UniqueCarrier (airline carrier ID), and ArrDelay (flight arrival delay)
as the variables of interest.

ds = tabularTextDatastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.SelectedVariableNames = {'Month', 'UniqueCarrier', 'ArrDelay'};

The datastore treats 'NA' values as missing, and replaces the missing values with NaN values by
default. Additionally, the SelectedVariableNames property allows you to work with only the
selected variables of interest, which you can verify using preview.

preview(ds)

ans=8x3 table
Month UniqueCarrier ArrDelay
10 {'PS'} 8
10 {'PS'} 8
10 {'PS'} 21
10 {'PS'} 13
10 {'PS'} 4
10 {'PS'} 59
10 {'PS'} 3
10 {'PS'} 11

Run MapReduce

The mapreduce function requires a map function and a reduce function as inputs. The mapper
receives blocks of data and outputs intermediate results. The reducer reads the intermediate results
and produces a final result.

In this example, the mapper computes the grouped statistics for each block of data and stores the
statistics as intermediate key-value pairs. Each intermediate key-value pair has a key for the group
level and a cell array of values with the corresponding statistics.

This map function accepts four input arguments, whereas the mapreduce function requires the map
function to accept exactly three input arguments. The call to mapreduce (below) shows how to pass
in this extra parameter.

Display the map function file.

function statsByGroupMapper(data, ~, intermKVStore, groupVarName)
% Data is a n-by-3 table. Remove missing values first

Compute Summary Statistics by Group Using MapReduce

delays = data.ArrDelay;
groups = data. (groupVarName);
notNaN =~isnan(delays);
groups = groups(notNaN);
delays = delays(notNaN);

% Find the unique group levels in this chunk
[intermKeys,~,idx] = unique(groups, 'stable');

% Group delays by idx and apply @grpstatsfun function to each group
intermVals = accumarray(idx,delays,size(intermKeys),@grpstatsfun);
addmulti(intermKVStore, intermKeys,intermvVals);

function out = grpstatsfun(x)

n = length(x); % count
m = sum(x)/n; % mean
v = sum((x-m).”2)/n; % variance
s = sum((x-m).”3)/n; % skewness without normalization
k = sum((x-m).”4)/n; % kurtosis without normalization
out = {[n, m, v, s, kl};

end

end

After the Map phase, mapreduce groups the intermediate key-value pairs by unique key (in this case,
the airline carrier ID), so each call to the reduce function works on the values associated with one
airline. The reducer receives a list of the intermediate statistics for the airline specified by the input
key (intermKey) and combines the statistics into separate vectors: n, m, v, s, and k. Then, the
reducer uses these vectors to calculate the count, mean, variance, skewness, and kurtosis for a single
airline. The final key is the airline carrier code, and the associated values are stored in a structure
with five fields.

Display the reduce function file.

function statsByGroupReducer(intermKey, intermVallter, outKVStore)
n=1[1;

[1;

[1;

[1;

[1;

~un << 3

% Get all sets of intermediate statistics
while hasnext(intermVallter)
value = getnext(intermVallter);

[n; value(l)];

[m; value(2)];

[v; value(3)];

[s; value(4)];

[k; value(5)];

m

%
end
ote that this approach assumes the concatenated intermediate values fit
n memory. Refer to the reducer function, covarianceReducer, of the

n
S
k
N
i
CovarianceMapReduceExample for an alternative pairwise reduction approach

o® o° of

% Combine the intermediate results
count = sum(n);

meanVal = sum(n.*m)/count;

d = m - meanVal;

13-63

13 Large Data

13-64

variance = (sum(n.*v) + sum(n.*d.”2))/count;
skewnessVal = (sum(n.*s) + sum(n.*d.*(3*v + d.”2)))./(count*variance™(1.5));
kurtosisVal = (sum(n.*k) + sum(n.*d.*(4*s + 6.*v.*d +d.”3)))./(count*variance”2);

outValue = struct('Count',count, 'Mean',meanVal, 'Variance',variance,...
'Skewness',skewnessVal, 'Kurtosis',kurtosisVal);

% Add results to the output datastore
add (outKVStore, intermKey, outValue);
end

Use mapreduce to apply the map and reduce functions to the datastore, ds. Since the parameterized
map function accepts four inputs, use an anonymous function to pass in the airline carrier IDs as the
fourth input.

outdsl = mapreduce(ds,
@(data,info, kvs)statsByGroupMapper(data,info, kvs, 'UniqueCarrier'),
@statsByGroupReducer);

K ok ok ok ok ok oK ok ok oK oK oK K K oK oK ok K oK ok oK K K oK oK K K K oK K K

* MAPREDUCE PROGRESS *
sk sk sk >k ok 3k sk sk ok sk sk sk ok 3k sk sk ok 3k sk sk ok sk sk sk ok 3k >k sk ok ok >k k
Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 10%
Map 100% Reduce 21%
Map 100% Reduce 31%
Map 100% Reduce 41%
Map 100% Reduce 52%
Map 100% Reduce 62%
Map 100% Reduce 72%
Map 100% Reduce 83%
Map 100% Reduce 93%
Map 100% Reduce 100%

mapreduce returns a datastore, outdsl, with files in the current folder.

Read the final results from the output datastore.
rl = readall(outdsl)

r1=29x2 table

Key Value
{'PS" } {1x1 struct}
{'TW' } {1x1 struct}
{'UA" } {1x1 struct}
{"WN' } {1x1 struct}
{'EA" } {1x1 struct}
{'HP' } {1x1 struct}
{"'NW' } {1x1 struct}

Compute Summary Statistics by Group Using MapReduce

{'PA (1)'} {1x1 struct}
{'PI' } {1x1 struct}
{'CO' } {1x1 struct}
{'DL" } {1x1 struct}
{'AA" } {1x1 struct}
{'USs" } {1x1 struct}
{'AS" } {1x1 struct}
{'ML (1)'} {1x1 struct}

} {1x1 struct}

{'AQ’

Organize Results

To organize the results better, convert the structure containing the statistics into a table and use the
carrier IDs as the row names. mapreduce returns the key-value pairs in the same order as they were
added by the reduce function, so sort the table by carrier ID.

statsByCarrier
statsByCarrier

struct2table(cell2mat(rl.Value), 'RowNames', rl.Key);
sortrows(statsByCarrier, 'RowNames')

statsByCarrier=29x5 table

Count Mean Variance Skewness Kurtosis
9E 507 5.3669 1889.5 6.2676 61.706
AA 14578 6.9598 1123 6.0321 93.085
AQ 153 1.0065 230.02 3.9905 28.383
AS 2826 8.0771 717 3.6547 24.083
B6 793 11.936 2087.4 4.0072 27.45
co 7999 7.048 1053.8 4.6601 41.038
DH 673 7.575 1491.7 2.9929 15.461
DL 16284 7.4971 697.48 4.4746 41.115
EA 875 8.2434 1221.3 5.2955 43.518
EV 1655 10.028 1325.4 2.9347 14.878
Fo9 332 8.4849 1138.6 4.,2983 30.742
FL 1248 9.5144 1360.4 3.6277 21.866
HA 271 -1.5387 323.27 8.4245 109.63
HP 3597 7.5897 744 .51 5.2534 50.004
ML (1) 69 0.15942 169.32 2.8354 16.559

MQ 3805 8.8591 1530.5 7.054 105.51

Change Grouping Parameter

The use of an anonymous function to pass in the grouping variable allows you to quickly recalculate
the statistics with a different grouping.

For this example, recalculate the statistics and group the results by Month, instead of by the carrier
IDs, by simply passing the Month variable into the anonymous function.

outds2 = mapreduce(ds, .
@(data,info, kvs)statsByGroupMapper(data,info, kvs, 'Month'),
@statsByGroupReducer);

>k 3k 3k 3k 3ko3kook ok Sk Sk Sk Sk 5k 5k 5k 5K 3K 5K 5K 3K K K K K >k >k >k kok kok sk

* MAPREDUCE PROGRESS *

13-65

13 Large Data

K 3K 3K 5K 5K 3K 5K 3K K K K >k >k >k >k >k >k >k sk >k skosk skoskookoskookokookok ok ok

Map 0% Reduce 0%
Map 16% Reduce 0%
Map 32% Reduce 0%
Map 48% Reduce 0%
Map 65% Reduce 0%
Map 81% Reduce 0%
Map 97% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 17%
Map 100% Reduce 33%
Map 100% Reduce 50%
Map 100% Reduce 67%
Map 100% Reduce 83%
Map 100% Reduce 100%

Read the final results and organize them into a table.

r2 = readall(outds2);

r2 = sortrows(r2, 'Key');

statsByMonth = struct2table(cell2mat(r2.Value));

mon = {'Jan','Feb', 'Mar"', '"Apr', 'May', 'Jun',
"Jul', "Aug', 'Sep', 'Oct', 'Nov', 'Dec'};

statsByMonth.Properties.RowNames = mon

statsByMonth=12x5 table

Count Mean Variance Skewness Kurtosis
Jan 9870 8.5954 973.69 4.1142 35.152
Feb 9160 7.3275 911.14 4.7241 45.03
Mar 10219 7.5536 976.34 5.1678 63.155
Apr 9949 6.0081 1077.4 8.9506 170.52
May 10180 5.2949 737.09 4.0535 30.069
Jun 10045 10.264 1266.1 4.8777 43.5
Jul 10340 8.7797 1069.7 5.1428 64.896
Aug 10470 7.4522 908.64 4.1959 29.66
Sep 9691 3.6308 664.22 4.6573 38.964
Oct 10590 4.6059 684.94 5.6407 74.805
Nov 10071 5.2835 808.65 8.0297 186.68
Dec 10281 10.571 1087.6 3.8564 28.823

Local Functions

Listed here are the map and reduce functions that mapreduce applies to the data.

function statsByGroupMapper(data, ~, intermKVStore, groupVarName)
% Data is a n-by-3 table. Remove missing values first

delays = data.ArrDelay;
groups = data. (groupVarName);
notNaN =~isnan(delays);
groups = groups(notNaN);
delays = delays(notNaN);

% Find the unique group levels in this chunk
[intermKeys,~,idx] = unique(groups, 'stable');

13-66

Compute Summary Statistics by Group Using MapReduce

% Group delays by idx and apply @grpstatsfun function to each group
intermVals = accumarray(idx,delays,size(intermKeys),@grpstatsfun);
addmulti(intermKVStore, intermKeys,intermvVals);

function out = grpstatsfun(x)

n = length(x); % count
m = sum(x)/n; % mean
v = sum((x-m).”2)/n; % variance
s = sum((x-m).”3)/n; % skewness without normalization
k = sum((x-m).”4)/n; % kurtosis without normalization
out = {[n, m, v, s, kl};

end

function statsByGroupReducer(intermKey, intermValIlter, outKVStore)
[1;
[1;
[1;
[1;
[1;

% Get all sets of intermediate statistics
while hasnext(intermVallter)
value = getnext(intermVallter);

= [n; value(1l)];

[m; value(2)];

[v; value(3)];

[s; value(4)];

[k; value(5)];

m

%
end
ote that this approach assumes the concatenated intermediate values fit
n memory. Refer to the reducer function, covarianceReducer, of the

n
s
k
N
i
CovarianceMapReduceExample for an alternative pairwise reduction approach

o® o° o°

% Combine the intermediate results

count = sum(n);

meanVal = sum(n.*m)/count;

d = m - meanVal;

variance = (sum(n.*v) + sum(n.*d.”2))/count;

skewnessVal = (sum(n.*s) + sum(n.*d.*(3*v + d.”2)))./(count*variance™(1.5));
kurtosisVal = (sum(n.*k) + sum(n.*d.*(4*s + 6.*v.*d +d.”3)))./(count*variance”2);

outValue = struct('Count',count, 'Mean',meanVal, 'Variance',bvariance,...
'Skewness',skewnessVal, 'Kurtosis',kurtosisVal);

% Add results to the output datastore
add (outKVStore,intermKey,outValue);

See Also
mapreduce | tabularTextDatastore

More About
. “Getting Started with MapReduce” on page 13-3

13-67

13 Large Data

. “Build Effective Algorithms with MapReduce” on page 13-18

13-68

Using MapReduce to Fit a Logistic Regression Model

Using MapReduce to Fit a Logistic Regression Model

This example shows how to use mapreduce to carry out simple logistic regression using a single
predictor. It demonstrates chaining multiple mapreduce calls to carry out an iterative algorithm.
Since each iteration requires a separate pass through the data, an anonymous function passes
information from one iteration to the next to supply information directly to the mapper.

Prepare Data

Create a datastore using the airlinesmall. csv data set. This 12-megabyte data set contains 29
columns of flight information for several airline carriers, including arrival and departure times. In this
example, the variables of interest are ArrDelay (flight arrival delay) and Distance (total flight

distance).
ds = tabularTextDatastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.SelectedVariableNames = {'ArrDelay', 'Distance'};

The datastore treats 'NA' values as missing, and replaces the missing values with NaN values by
default. Additionally, the SelectedVariableNames property allows you to work with only the
specified variables of interest, which you can verify using preview.

preview(ds)

ans=8x2 table

ArrDelay Distance
8 308
8 296
21 480
13 296
4 373
59 308
3 447
11 954

Perform Logistic Regression

Logistic regression is a way to model the probability of an event as a function of another variable. In
this example, logistic regression models the probability of a flight being more than 20 minutes late as
a function of the flight distance, in thousands of miles.

To accomplish this logistic regression, the map and reduce functions must collectively perform a
weighted least-squares regression based on the current coefficient values. The mapper computes a
weighted sum of squares and cross product for each block of input data.

Display the map function file.

function logitMapper(b,t,~,intermKVStore)
Get data input table and remove any rows with missing values

o°

y = t.ArrDelay;

x = t.Distance;

t = ~isnan(x) & ~isnan(y);

y = y(t)>20; % late by more than 20 min

13-69

13 Large Data

13-70

x = x(t)/1000; % distance in thousands of miles

% Compute the linear combination of the predictors, and the estimated mean
% probabilities, based on the coefficients from the previous iteration

if ~isempty(b)

Compute xb as the linear combination using the current coefficient
values, and derive mean probabilities mu from them

%
%

xb = b(1)+b(2)*x;
mu = 1./(1l+exp(-xb));
else

% This is the first iteration. Compute starting values for mu that are
% 1/4 if y=0 and 3/4 if y=1. Derive xb values from them.

mu = (y+.5)/2;
xb = log(mu./(1-mu));
end

To perform weighted least squares, compute a sum of squares and cross
products matrix:

(X'RWEX) = (X1'FWL*X1) + (X2'*W2*X2) + ... + (Xn'*Wn*Xn),
where X = [X1;X2;...;Xn] and W = [W1;W2;...;Wn].

The mapper receives one chunk at a time and computes one of the terms on
the right hand side. The reducer adds all of the terms to get the
quantity on the left hand side, and then performs the regression.

0° o° o° o° 0P o° o° o°

w = (mu.*(1l-mu)); % weights
z=xb+ (y - mu) .* 1./w; % adjusted response
X = [ones(size(x)),x,z]; matrix of unweighted data

o® o

wss = X' * bsxfun(@times,w,X); weighted cross-products X1'*W1*X1
% Store the results for this part of the data.
add(intermKVStore, 'key', wss);

end

The reducer computes the regression coefficient estimates from the sums of squares and cross
products.

Display the reduce function file.

function logitReducer(~,intermVallter,outKVStore)
% We will operate over chunks of the data, updating the count, mean, and
% covariance each time we add a new chunk
old = 0;

We want to perform weighted least squares. We do this by computing a sum
of squares and cross products matrix

M = (X"*WkX) = (XL'*WL*X1) + (X2'*W2*X2) + ... + (Xn'*Wn*Xn)
where X = X1;X2;...;Xn] and W = [W1;W2;...;Wn].

The mapper has computed the terms on the right hand side. Here in the
reducer we just add them up.

0® % o° o° o o° o°

while hasnext(intermVallter)

new = getnext(intermVallter);
old = old+new;
end

M = old; % the value on the left hand side

Using MapReduce to Fit a Logistic Regression Model

% Compute coefficients estimates from M. M is a matrix of sums of squares

% and cross products for [X Y] where X is the design matrix including a

% constant term and Y is the adjusted response for this iteration. In other
% words, Y has been included as an additional column of X. First we

% separate them by extracting the X'*W*X part and the X'*W*Y part.

XtWX = M(1l:end-1,1:end-1);

XtWY = M(1l:end-1,end);

% Solve the normal equations.
b = XtWX\XtWY;

% Return the vector of coefficient estimates.
add (outkKVStore, 'key', b);
end

Run MapReduce

Run mapreduce iteratively by enclosing the calls to mapreduce in a loop. The loop runs until the
convergence criteria are met, with a maximum of five iterations.

% Define the coefficient vector, starting as empty for the first iteration.
b =1[1;

for iteration = 1:5
b old = b;
iteration

% Here we will use an anonymous function as our mapper. This function
% definition includes the value of b computed in the previous
% iteration.

mapper = @(t,ignore,intermKVStore) logitMapper(b,t,ignore,intermKVStore);

S
[0
(%]
c
f_‘
~+
1

mapreduce(ds, mapper, @logitReducer, 'Display', 'off');
tbl = readall(result);
b = tbl.vValue{1}

% Stop iterating if we have converged.
if ~isempty(b old) && ...
~any(abs(b-b old) > le-6 * abs(b old))
break
end
end

iteration =1
b = 2x1
-1.7674
0.1209
iteration = 2
b = 2x1

-1.8327
0.1807

13-71

13 Large Data

iteration = 3
b = 2x1

-1.8331
0.1806

iteration = 4
b = 2x1

-1.8331
0.1806

View Results

Use the resulting regression coefficient estimates to plot a probability curve. This curve shows the
probability of a flight being more than 20 minutes late as a function of the flight distance.

XX linspace(0,4000);

vy 1./(1l+exp(-b(1l)-b(2)*(xx/1000)));
plot(xx,yy);

xlabel('Distance');
ylabel('Prob[Delay>20]")

D.zﬁ' T T T T T T T

0.24 pd

0.22 7 i

018 | - .

Prob[Delay=20]

T
A

0.16 P
0.14 // -

D- 1 2 i i i i i i i
0 500 1000 1500 2000 2500 3000 3500 4000

Distance

13-72

Using MapReduce to Fit a Logistic Regression Model

Local Functions

Listed here are the map and reduce functions that mapreduce applies to the data.

function logitMapper(b,t,~,intermKVStore)
Get data input table and remove any rows with missing values

o°

y = t.ArrDelay;

x = t.Distance;

t = ~isnan(x) & ~isnan(y);

y = y(t)>20; % late by more than 20 min

x = x(t)/1000; % distance in thousands of miles

Compute the linear combination of the predictors, and the estimated mean
probabilities, based on the coefficients from the previous iteration

if ~isempty(b)

Compute xb as the linear combination using the current coefficient
values, and derive mean probabilities mu from them

xb = b(1)+b(2)*x;

o o°

o® o

mu = 1./(1+exp(-xb));
else
% This is the first iteration. Compute starting values for mu that are
% 1/4 if y=0 and 3/4 if y=1. Derive xb values from them.
mu = (y+.5)/2;
xb = log(mu./(1-mu));
end

To perform weighted least squares, compute a sum of squares and cross
products matrix:

(X'RWEX) = (X1'FWL*X1) + (X2'*W2*X2) + ... + (Xn'*Wn*Xn),
where X = [X1;X2;...;Xn] and W = [W1;W2;...;Wn].

The mapper receives one chunk at a time and computes one of the terms on
the right hand side. The reducer adds all of the terms to get the
quantity on the left hand side, and then performs the regression.

0° 0° o° o° P o° o° o°

w = (mu.*(1l-mu)); % weights
z=xb+ (y - mu) .* 1./w; % adjusted response
X = [ones(size(x)),x,z]; matrix of unweighted data

o® o°

wss = X' * bsxfun(@times,w,X); weighted cross-products X1'*W1*X1
% Store the results for this part of the data.
add(intermKVStore, 'key', wss);

function logitReducer(~,intermVallter,outKVStore)
% We will operate over chunks of the data, updating the count, mean, and
% covariance each time we add a new chunk
old = 0;

We want to perform weighted least squares. We do this by computing a sum
of squares and cross products matrix

M = (X'"*WkX) = (XL1'*WL*X1) + (X2'*W2*X2) + ... + (Xn'*Wn*Xn)
where X = X1;X2;...;Xn] and W = [WL1;W2;...;Wn].

The mapper has computed the terms on the right hand side. Here in the
reducer we just add them up.

0° 0° o° o° 0P o° o°

while hasnext(intermVallter)

13-73

13 Large Data

new = getnext(intermVallter);
old = old+new;
end

M = old; % the value on the left hand side

% Compute coefficients estimates from M. M is a matrix of sums of squares

% and cross products for [X Y] where X is the design matrix including a

% constant term and Y is the adjusted response for this iteration. In other
% words, Y has been included as an additional column of X. First we

% separate them by extracting the X'*W*X part and the X'*W*Y part.

XtwXx
Xtwy

M(1l:end-1,1:end-1);
M(1l:end-1,end);

% Solve the normal equations.
b = XtWX\XtWY;

% Return the vector of coefficient estimates.
add (outkKVStore, 'key', b);

See Also
mapreduce | tabularTextDatastore

More About

. “Getting Started with MapReduce” on page 13-3
. “Build Effective Algorithms with MapReduce” on page 13-18

13-74

Tall Skinny QR (TSQR) Matrix Factorization Using MapReduce

Tall Skinny QR (TSQR) Matrix Factorization Using MapReduce

This example shows how to compute a tall skinny QR (TSQR) factorization using mapreduce. It
demonstrates how to chain mapreduce calls to perform multiple iterations of factorizations, and uses
the info argument of the map function to compute numeric keys.

Prepare Data

Create a datastore using the airlinesmall. csv data set. This 12-megabyte data set contains 29
columns of flight information for several airline carriers, including arrival and departure times. In this
example, the variables of interest are ArrDelay (flight arrival delay), DepDelay (flight departure
delay) and Distance (total flight distance).

ds = tabularTextDatastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.ReadSize = 1000;
ds.SelectedVariableNames = {'ArrDelay', 'DepDelay', 'Distance'};

The datastore treats 'NA' values as missing and replaces the missing values with NaN values by
default. The ReadSize property lets you specify how to partition the data into blocks. Additionally,
the SelectedVariableNames property allows you to work with only the specified variables of
interest, which you can verify using preview.

preview(ds)

ans=8x3 table
ArrDelay DepDelay Distance

8 12 308
8 1 296
21 20 480
13 12 296
4 -1 373
59 63 308
3 -2 447
11 -1 954

Chain MapReduce Calls

The implementation of the multi-iteration TSQR algorithm needs to chain consecutive mapreduce
calls. To demonstrate the general chaining design pattern, this example uses two mapreduce
iterations. The output from the map function calls is passed into a large set of reducers, and then the
output of these reducers becomes the input for the next mapreduce iteration.

First MapReduce Iteration

In the first iteration, the map function, tsqrMapper, receives one block (the ith) of data, which is a
table of size N; X 3. The mapper computes the R matrix of this block of data and stores it as an
intermediate result. Then, mapreduce aggregates the intermediate results by unique key before
sending them to the reduce function. Thus, mapreduce sends all intermediate R matrices with the
same key to the same reducer.

Since the reducer uses qr, which is an in-memory MATLAB® function, it's best to first make sure that
the R matrices fit in memory. This example divides the dataset into eight partitions. The mapreduce

13-75

13 Large Data

function reads the data in blocks and passes the data along with some meta information to the map
function. The info input argument is the second input to the map function and it contains the read
offset and file size information that are necessary to generate the key,

key = ceil(offset/fileSize/numPartitions).
Display the map function file.

function tsqrMapper(data, info, intermKVStore)
x = data{:,:};
x(any(isnan(x),2),:) = [];% Remove missing values
[~, r] =qr(x,0);

% intermKey = randi(4); % random integer key for partitioning intermediate results
intermKey = computeKey(info, 8);
add(intermKVStore,intermKey, r);

function key = computeKey(info, numPartitions)
fileSize = info.FileSize; % total size of the underlying data file
partitionSize = fileSize/numPartitions; % size in bytes of each partition
offset = info.0ffset; % offset in bytes of the current read
key = ceil(offset/partitionSize);
end
end

The reduce function receives a list of the intermediate R matrices, vertically concatenates them, and
computes the R matrix of the concatenated matrix.

Display the reduce function file.

function tsqrReducer(intermKey, intermVallIter, outKVStore)
x = [1;

while (intermValIter.hasnext)

x = [x;intermVallter.getnext];
end
% Note that this approach assumes the concatenated intermediate values fit
% in memory. Consider increasing the number of reduce tasks (increasing the
% number of partitions in the tsqrMapper) and adding more iterations if it
% does not fit in memory.

[~, r] =qr(x,0);

add (outKVStore,intermKey, r);
end

Use mapreduce to apply the map and reduce functions to the datastore, ds.

outdsl = mapreduce(ds, @tsqrMapper, @tsqrReducer);

>k 3k 3k 3k 3k 3kook 3k Sk Sk Sk Sk 5k 5k 5k 5K 3K 5K 5K 3K K K K K K >k >k >k kkok sk

* MAPREDUCE PROGRESS *
3k 3k 5k >k 3k 5k >k >k >k 5k >k >k 5k >k >k 5k >k >k 5k >k >k 5k >k >k 5k >k >k >k >k >k ok >k
Map 0% Reduce %

Map 10% Reduce 0%
Map 20% Reduce %
Map 30% Reduce 0%
Map 40% Reduce 0%

13-76

Tall Skinny QR (TSQR) Matrix Factorization Using MapReduce

Map 50% Reduce
Map 60% Reduce
Map 70% Reduce
Map 80% Reduce
Map 90% Reduce
Map 100% Reduce
Map 100% Reduce
Map 100% Reduce
Map 100% Reduce
Map 100% Reduce
Map 100% Reduce
Map 100% Reduce
Map 100% Reduce
Map 100% Reduce
Map 100% Reduce

OO ~NOUTE, WN K-
QUOVWOONOPPRWNRPEFRPOOOOOO
0° 0% 0% 3% 0% O° O° O° O° A° o° A% A° O° o°

=

mapreduce returns an output datastore, outdsl, with files in the current folder.

Second MapReduce Iteration

The second iteration uses the output of the first iteration, outds1, as its input. This iteration uses an

identity mapper, identityMapper, which simply copies over the data using a single key,
'"Identity’.

Display the identity mapper file.

function identityMapper(data, info, intermKVStore)
% This mapper function simply copies the data and add them to the
% intermKVStore as intermediate values.
x = data.Value{:,:};
add(intermKVStore, 'Identity', x);
end

The reducer function is the same in both iterations. The use of a single key by the map function
means that mapreduce only calls the reduce function once in the second iteration.

Use mapreduce to apply the identity mapper and the same reducer to the output from the first
mapreduce call.

outds2 = mapreduce(outdsl, @identityMapper, @tsqrReducer);

Kok ok ok ok ok oK ok ok ok oK oK ok koK oK oK ok K oK oK ok K K oK oK K K K oK K K

* MAPREDUCE PROGRESS *
sk sk 3k >k ok 3k sk sk ok sk sk ok ok 3k sk ok ok 3K >k ok K sk >k ok ok 3k >k ok K K >k k
Map 0% Reduce 0%
Map 11% Reduce 0%
Map 22% Reduce 0%
Map 33% Reduce 0%
Map 44% Reduce 0%
Map 55% Reduce 0%
Map 66% Reduce 0%
Map 77% Reduce 0%
Map 88% Reduce 0%
Map 100% Reduce 0%
Map 100% Reduce 100%

View Results

Read the final results from the output datastore.

13-77

13 Large Data

r = readall(outds2);
r.Value{:}

ans = 3x3
10° x

0.1091 0.0893 0.5564
0 -0.0478 -0.4890
0 0 3.0130

Local Functions

Listed here are the map and reduce functions that mapreduce applies to the data.

function tsqrMapper(data, info, intermKVStore)
x = data{:,:};
x(any(isnan(x),2),:) = [1];% Remove missing values
[~, r]l =qr(x,0);
% intermKey = randi(4); % random integer key for partitioning intermediate results
intermKey = computeKey(info, 8);
add(intermKVStore,intermKey, r);

function key = computeKey(info, numPartitions)
fileSize = info.FileSize; % total size of the underlying data file
partitionSize = fileSize/numPartitions; % size in bytes of each partition
offset = info.0ffset; % offset in bytes of the current read
key = ceil(offset/partitionSize);
end
end

function tsqrReducer(intermKey, intermVallIter, outKVStore)
x = [1;

while (intermVallter.hasnext)

X = [x;intermVallter.getnext];
end
% Note that this approach assumes the concatenated intermediate values fit
in memory. Consider increasing the number of reduce tasks (increasing the
number of partitions in the tsqrMapper) and adding more iterations if it
does not fit in memory.

o® o° o°

[~, r] =qr(x,0);

add (outKVStore,intermKey, r);
end

function identityMapper(data, info, intermKVStore)
% This mapper function simply copies the data and add them to the
% intermKVStore as intermediate values.
x = data.Value{:,:};
add(intermKVStore, 'Identity', x);
end

13-78

Tall Skinny QR (TSQR) Matrix Factorization Using MapReduce

Reference

1 Paul G. Constantine and David E. Gleich. 2011. Tall and skinny QR factorizations in MapReduce
architectures. In Proceedings of the Second International Workshop on MapReduce and Its
Applications (MapReduce '11). ACM, New York, NY, USA, 43-50. DOI=10.1145/1996092.1996103
https://doi.acm.org/10.1145/1996092.1996103

See Also
mapreduce | tabularTextDatastore

More About
. “Getting Started with MapReduce” on page 13-3
. “Build Effective Algorithms with MapReduce” on page 13-18

13-79

https://doi.acm.org/10.1145/1996092.1996103

13 Large Data

Compute Maximum Average HSV of Images with MapReduce

13-80

This example shows how to use ImageDatastore and mapreduce to find images with maximum
hue, saturation and brightness values in an image collection.

Prepare Data

Create a datastore using the images in toolbox/matlab/demos and toolbox/matlab/imagesci.
The selected images have the extensions .jpg, .tif and .png.

demoFolder = fullfile(matlabroot, 'toolbox', 'matlab', 'demos');
imsciFolder = fullfile(matlabroot, 'toolbox', 'matlab', 'imagesci');

Create a datastore using the folder paths, and filter which images are included in the datastore using
the FileExtensions Name-Value pair.

ds = imageDatastore({demoFolder, imsciFolder},
'FileExtensions', {'.jpg', '.tif', '.png'});
Find Average Maximum HSV from All Images

One way to find the maximum average hue, saturation, and brightness values in the collection of
images is to use readimage within a for-loop, processing the images one at a time. For an example of
this method, see “Read and Analyze Image Files” on page 13-100.

This example uses mapreduce to accomplish the same task, however, the mapreduce method is
highly scalable to larger collections of images. While the for-loop method is reasonable for small
collections of images, it does not scale well to a large collection of images.

Scale to MapReduce

* The mapreduce function requires a map function and a reduce function as inputs.

* The map function receives blocks of data and outputs intermediate results.

* The reduce function reads the intermediate results and produces a final result.

Map Function

* In this example, the map function stores the image data and the average HSV values as
intermediate values.

* The intermediate values are associated with 3 keys, 'Average Hue', 'Average Saturation'
and 'Average Brightness'.

function hueSaturationValueMapper(data, info, intermKVStore)
if ~ismatrix(data)
hsv = rgb2hsv(data);

% Extract Hue values
= hsv(:,:,1);

>

o°

Extract Saturation values
= hsv(:,:,2);

(0]

o°

Extract Brightness values
= hsv(:,:,3);

<

Compute Maximum Average HSV of Images with MapReduce

% Find average of HSV values

avgH = mean(h(:));
avgS = mean(s(:));
avgV = mean(v(:));

% Add intermediate key-value pairs

add(intermKVStore, 'Average Hue', struct('Filename', info.Filename, 'Avg', avgH));

add(intermKVStore, 'Average Saturation', struct('Filename', info.Filename,

add(intermKVStore, 'Average Brightness', struct('Filename', info.Filename,
end

end

Reduce Function

"Avg', avgS))
"Avg', avgV))

* The reduce function receives a list of the image file names along with the respective average HSV
values and finds the overall maximum values of average hue, saturation and brightness values.

* mapreduce only calls this reduce function 3 times, since the map function only adds three unique

keys.

* The reduce function uses add to add a final key-value pair to the output. For example, 'Maximum

Average Hue' is the key and the respective file name is the value.

function hueSaturationValueReducer(key, intermVallter, outKVSTore)
maxAvg = 0,
maxImageFilename = '';

% Loop over values for each key
while hasnext(intermVallter)
value = getnext(intermVallter);
% Compare values to determine maximum
if value.Avg > maxAvg
maxAvg = value.Avg;
maxImageFilename = value.Filename;
end
end

% Add final key-value pair
add (outKVSTore, ['Maximum ' keyl], maxImageFilename);
end

Run MapReduce

Use mapreduce to apply the map and reduce functions to the datastore, ds.

maxHSV = mapreduce(ds, @hueSaturationValueMapper, @hueSaturationValueReducer);

>k 3k 3k 3ko3ko3kook Sk Sk Sk Sk Sk 5k 5k 5k 5K 3K 5K 5K 3K K K Kk >k >k >k >k kokok sk

* MAPREDUCE PROGRESS *
3k 5k 3k 3k 5k 3k 3k 5k >k 3k 3k 3k 3k 3K 3k Sk 3k >k Sk 3k 3k ok >k ko ok >k kok kok ok >k
Map 0% Reduce 0%
Map 12% Reduce %
Map 25% Reduce %
Map 37% Reduce %
Map 50% Reduce 0%
Map 62% Reduce %
Map 75% Reduce 0%
Map 87% Reduce 0%

13-81

13 Large Data

13-82

Map 100% Reduce 0%
Map 100% Reduce 33%
Map 100% Reduce 67%
Map 100% Reduce 100%

mapreduce returns a datastore, maxHSV, with files in the current folder.

Read and display the final result from the output datastore, maxHSV. Use find and strcmp to find
the file index from the Files property.

tbl = readall(maxHSV);

for i = 1:height(tbl)
figure;
idx = find(strcmp(ds.Files, tbl.Value{i}));
imshow(readimage(ds, idx), 'InitialMagnification', 'fit');
title(tbl.Key{i});

end

Maximum Average Hue

Compute Maximum Average HSV of Images with MapReduce

Maximum Average Saturation

13-83

13 Large Data

13-84

Local Functions

Listed here are the map and reduce functions that mapreduce applies to the data.

function hueSaturationValueMapper(data, info, intermKVStore)
if ~ismatrix(data)
hsv = rgb2hsv(data);

=y

hsv(:,:,1);

o°

w0

= hsv(:,:,2);

o°

= hsv(:,:,3);

<

\°

mean(h(:));
mean(s(:));
mean(v(:));

avgH
avgs
avgV

% Add intermediate
add(intermKVStore,
add(intermKVStore,
add(intermKVStore,

end

end

% Extract Hue values
Extract Saturation values
Extract Brightness values

s Find average of HSV values

key-value pairs

'Average Hue', struct('Filename', info.Filename, 'Avg', avgH));
"Average Saturation', struct('Filename', info.Filename, 'Avg', avgS));
"Average Brightness', struct('Filename', info.Filename, 'Avg', avgV));

Compute Maximum Average HSV of Images with MapReduce

function hueSaturationValueReducer(key, intermValIlter, outKVSTore)
maxAvg = 0;
maxImageFilename = '';
% Loop over values for each key
while hasnext(intermVallter)
value = getnext(intermVallter);
% Compare values to determine maximum
if value.Avg > maxAvg
maxAvg = value.Avg;
maxImageFilename = value.Filename;
end
end

% Add final key-value pair
add (outKVSTore, ['Maximum ' key], maxImageFilename);

See Also
mapreduce | imageDatastore | tall

More About

. “Getting Started with MapReduce” on page 13-3

. “Build Effective Algorithms with MapReduce” on page 13-18
. “Tall Arrays for Out-of-Memory Data” on page 13-146

. “Getting Started with Datastore” on page 13-86

13-85

13 La

rge Data

Gett

ing Started with Datastore

In this section...

“What Is a Datastore?” on page 13-86
“Create and Read from a Datastore” on page 13-87

What Is a Datastore?

A datastore is an object for reading a single file or a collection of files or data. The datastore acts as a
repository for data that has the same structure and formatting. For example, each file in a datastore
must contain data of the same type (such as numeric or text) appearing in the same order, and

separated by the same delimiter.

A B C D E F G H T] K L M N 0 P qQ R
1 Year Month DayofMor DayOfWe(DepTime CRSDepTiiArrTime CRSArrTin UniqueCa FlightNun TailNum ActualElag CRSElapse AirTime ArrDelay DepDelay Origin Dest Dista
2 2000 4 1641 1635 1831 1330 WN 1726 N353 50 55 a1 1 6 ELP L8
3 2000
. 2000 B C D E F G H 1 J K L M N) P Q R
5 2000 | 1 Yesr Month DayofMor DayOfwe: DepTime CRSDepTilArrTime CRSArTim UniqueCa FlightNun TailNum ActualElsf CRSElapse AirTime ArrDelay DepDelay Origin Dest Dista
B 2000 | 2 1990 10 31 6 1655 1655 1742 1755 Pl 903 NA a7 60 NA -13 0 LGA SYR
- 2000 | 3 1990 10 11 7 1042 1042 1107 1107 Pl 929 NA 25 25 NA 0 0 SYR ITH
g 2000 |4 1930 A B C D E F G H 1 J K L M N 0 P Q R
9 2000 | ° 1990 1 |Year Month DayofMor DayOfWe DepTime CRSDepTilArrTime CRSArrTin UnigueCa FlightNum TailNum ActuslElaf CRSElapse AirTime ArrDelay DepDelay Origin Dest
10 2000 | © 130 |, 1387 10 21 3 642 620 735 727 S 1503 NA 53 57/NA 8 12 LAX sic
1 2000 |7 19%0| | 3 1387 10 26 1 1021 1020 1124 1116 PS 1550 NA 63 56 NA 8 1s1C BUR
12 2000 | & 1950 | 4 1387 10 23 5 2055 2035 2218 2157 PS 1589 NA 83 82 NA 21 20 SAN SMF
13 2000 |° 1930 | 5 1387 10 23 5 1332 1320 1431 1418 PS 1655 NA 59 58 /NA 13 12 BUR sic
14 2000 |2 1930 |5 1387 10 2 4 629 620 746 742 PS 1702 NA 77 72/ NA 4 -1 SMF LAX
15 2000 | 1%0| |4 1387 10 28 3 1445 1343 1547 1448 PS 1729 NA 61 65 NA 59 63 LAX sic
16 2000 |2 1930 | g 1387 10 8 4 928 930 1052 1049 PS 1763 NA 34 79 NA 3 -2 SAN SFO
17 2000 |12 1990 | g 1987 10 10 6 859 900 1134 1123 Ps 1800 NA 155 143 NA 1 -1 SEA LAX
18 2000 | 1990 |49 1987 10 20 2 1833 1830 1929 1926 PS 1831 NA 56 56 NA 3 3 LAX siC
19 2000 |1° 1990 14y 1987 10 15 a 1041 1040 1157 1155 Ps 1864 NA 76 75 NA 2 15F0 LAS
20 2000 | 1€ 1990145 1987 10 15 a 1608 1553 1656 1640 PS 1907 NA a8 47 NA 16 15 LAX FAT
21 2000 |V 1990 143 1987 10 21 3 949 940 1055 1052 Ps 1939 NA 66 72 NA 3 9168 SFO
22 2000 |18 1990 |44 1987 10 2 a 1902 1847 2030 1951 PS 1973 NA 88 54 NA 39 15 LAX 0AK
| 33 1 1990 145 1987 10 16 5 1910 1838 2052 1955 TWw 19 NA 162 137 NA 57 32 STL DEN
20 1990 146 1987 10 2 5 130 1133 1237 1237 TW 59 NA 187 184 NA 0 -3 sTL PHX
24 1990 147 1987 10 30 5 1400 1400 1920 1934 TW 102 NA 200 214 NA -14 0 SNA STL
2 1990 |45 1987 10 2 3 841 830 1233 1218 TW 136 NA 172 168 NA 15 11 TUS STL
| Z e i 1 1387 10 5 1 1500 1445 1703 1655 TW 183 NA 243 250 NA 8 15 STL SFO
20 1987 10 27 2 1647 1640 1914 1903 TW 220 NA 87 83 NA 11 7 sTL DTW
21 1987 10 15 4 1709 1710 1752 1749 TW 251 NA 103 99 NA 3 -1pIT STL
2 1987 10 2 6 1515 1515 1544 1545 TW 283 NA 2 30 NA -1 0 SRQ RSW
3 1987 10 25 7 2017 2017 2347 2329 TW 318 NA 150 132 NA 18 0 STL BDL
218 2220 2335 2322 TW -28TL

13-86

A datastore is useful when:

* Each file in the collection might be too large to fit in memory. A datastore allows you to read and
analyze data from each file in smaller portions that do fit in memory.

» Files in the collection have arbitrary names. A datastore acts as a repository for files in one or
more folders. The files are not required to have sequential names.

You can create a datastore based on the type of data or application. The different types of datastores

contain properties pertinent to the type of data that they support. For example, see the following

table for a list of MATLAB datastores. For a complete list of datastores, see “Select Datastore for File

Format or Application” on page 13-90.

Type of File or Data

Datastore Type

Text files containing column-oriented data, including
CSV files.

TabularTextDatastore

Getting Started with Datastore

Type of File or Data Datastore Type
Image files, including formats that are supported by ImageDatastore
imread such as JPEG and PNG.

Spreadsheet files with a supported Excel format such |SpreadsheetDatastore
as .xlsx.

Key-value pair data that are inputs to or outputs of KeyValueDatastore
mapreduce.

Parquet files containing column-oriented data. ParquetDatastore
Custom file formats. Requires a provided function for |FileDatastore
reading data.

Datastore for checkpointing tall arrays. TallDatastore

Create and Read from a Datastore

Use the tabularTextDatastore function to create a datastore from the sample file

airlinesmall. csv, which contains departure and a

rrival information about individual airline

flights. The result is a TabularTextDatastore object.

ds = tabularTextDatastore('airlinesmall.csv')
ds =

TabularTextDatastore with properties:

Files: {
' ...\matlab\toolbox\matlab\demos\a
}
Folders: {
' ...\matlab\toolbox\matlab\demos"
}

FileEncoding: 'UTF-8'
AlternateFileSystemRoots: {}
PreserveVariableNames: false
ReadVariableNames: true
VariableNames: {'Year', 'Month', 'DayofMonth' ...
DatetimelLocale: en US

Text Format Properties:
NumHeaderLines: 0
Delimiter: ',
RowDelimiter: '\r\n'
TreatAsMissing: '
MissingValue: NaN

Advanced Text Format Properties:
TextscanFormats: {'sf', 'sf', '%f' ... and 26 more}
TextType: 'char'
ExponentCharacters: 'eEdD'
CommentStyle: '
Whitespace: ' \b\t'
MultipleDelimitersAsOne: false

Properties that control the table returned by preview, read, r
SelectedVariableNames: {'Year', 'Month', 'DayofMonth' ...
SelectedFormats: {'%f', '%f', 'sf' ... and 26 more}
ReadSize: 20000 rows
OutputType: 'table'
RowTimes: []

Write-specific Properties:
SupportedOutputFormats: ["txt" "csv" "xlsx" "xls"
DefaultOutputFormat: "txt"

irlinesmall.csv'

and 26 more}

eadall:
and 26 more}

"parquet" "parq"]

13-87

13 Large Data

After creating the datastore, you can preview the data without having to load it all into memory. You
can specify variables (columns) of interest using the SelectedVariableNames property to preview
or read only those variables.

1 |Year

2 1987
3 1987
4 1987
5 1987
6 1987
7 1987
8 1987
9 1987
10 1987
11 1987
12 1987
13 1987
14 1987
15 1987
16 1987
17 1987
18 1987
19 1987

13-88

"B
2

B C D E F G H I J I L 1 N Q P Q R
Month DayofMor DayOfWeu CRSDepTilArrTime CRSArTin UnigueCa FlightNur TailNum ActualElaf CRSElapse AirTime ArrDelay |DepDelay|Origin Dest Di
10 21 3 642 630 735 727 PS 1503 NA 53 57 NA 8 12 LAX sic
10 26 1 1021 1020 1124 1116 PS 1550 NA 63 56 NA 8 1/81C BUR
10 23 5 2055 2035 2218 2157 PS 1589 NA 83 82 NA 21 20/ SAN SMF
10 23 5 1332 1320 1431 1418 PS 1655 NA 59 58 NA 13 12 BUR sic
10 22 4 629 630 746 742 PS 1702 NA 77 72 NA 4 -1/ SMF LaX
10 28 3 1446 1343 1547 1448 PS 1729 NA 61 65 NA 59 63 LAX sic
10 8 4 928 930 1052 1049 PS 1763 NA 84 79 NA 3 -2|SAN SFO
10 10 6 859 900 1134 1123 PS 1300 NA 155 143 NA 11 -1/ SEA LaX
10 20 2 1833 1830 1929 1926 PS 1331 NA 56 56 NA 3 3 LAX sic
10 15 4 1041 1040 1157 1155 PS 1364 NA 76 75 NA 2 1 SFO LAS
10 15 4 1608 1553 1656 1640 PS 1907 NA 438 47 NA 16 15 LAaX FAT
10 21 3 943 940 1055 1052 PS 1939 NA 66 72 NA 3 9 LGB SFO
10 22 4 1902 1847 2030 1951 PS 1973 NA 88 64 NA 39 15 LAX QAK
10 16 5 1910 1838 2052 1955 TW 19 NA 162 137 NA 57 32 STL DEN
10 2 5 1130 1133 1237 1237 TW 59 NA 187 184 NA 0 -3|5TL PHX
10 30 5 1400 1400 1920 1934 TW 102 NA 200 214 NA -14 0(SNA STL
10 23 3 841 830 1233 1218 TW 136 NA 172 168 NA 15 11 TUS STL
10 5 1 1500 1445 1703 1655 TW 183 NA 243 250 NA g 15 STL SFO

1640 1914 1903 TW 220 a a2 83 NA 1 7/sTL DTW
1710 1752 17 e ——— 3 -1PIT ST

ds.SelectedVariableNames = {'DepTime', 'DepDelay'};
preview(ds)

ans =
8x2 table

DepTime DepDelay

642 12
1021 1
2055 20
1332 12

629 -1
1446 63

928 -2

859 -1

You can specify the values in your data which represent missing values. In airlinesmall.csv,
missing values are represented by NA.

ds.TreatAsMissing = 'NA';

If all of the data in the datastore for the variables of interest fit in memory, you can read it using the
readall function.

T = readall(ds);

Otherwise, read the data in smaller subsets that do fit in memory, using the read function. By
default, the read function reads from a TabularTextDatastore 20,000 rows at a time. However,
you can change this value by assigning a new value to the ReadSize property.

ds.ReadSize = 15000;

Getting Started with Datastore

Reset the datastore to the initial state before re-reading, using the reset function. By calling the
read function within a while loop, you can perform intermediate calculations on each subset of data,
and then aggregate the intermediate results at the end. This code calculates the maximum value of
the DepDelay variable.

reset(ds)
X =11;
while hasdata(ds)
T = read(ds);
X(end+1) = max(T.DepDelay);
end
maxDelay = max(X)

maxDelay =
1438

If the data in each individual file fits in memory, you can specify that each call to read should read
one complete file rather than a specific number of rows.

reset(ds)
ds.ReadSize = 'file';
X =11;
while hasdata(ds)
T = read(ds);
X(end+1l) = max(T.DepDelay);
end
maxDelay = max(X);

In addition to reading subsets of data in a datastore, you can apply map and reduce functions to the
datastore using mapreduce or create a tall array using tall. For more information, see “Getting
Started with MapReduce” on page 13-3 and “Tall Arrays for Out-of-Memory Data” on page 13-146.

See Also

tabularTextDatastore | imageDatastore | spreadsheetDatastore | KeyValueDatastore |
fileDatastore | tall | mapreduce

Related Examples

. “Select Datastore for File Format or Application” on page 13-90
. “Read and Analyze Large Tabular Text File” on page 13-98
. “Read and Analyze Image Files” on page 13-100

13-89

13 Large Data

Select Datastore for File Format or Application

13-90

A datastore is a repository for collections of data that are too large to fit in memory. Each file format
and application uses a different type of datastore, which contains properties pertinent to the type of
data or application that it supports. MATLAB provides datastores for standard file formats such as
Excel files and datastores for specific applications such as Deep Learning. In addition to the existing
datastores, if your data is in a proprietary format, then you can develop a customized datastore using

the custom datastore framework.

Datastores for Standard File Formats

For a collection of data in standard file format use one of these options.

Datastore Description

TabularTextDatastore Text files containing column-oriented data,
including CSV files

SpreadsheetDatastore Spreadsheet files with a supported Excel format
such as . x1lsx

ImageDatastore Image files, including formats that are supported
by imread such as JPEG and PNG

ParquetDatastore Parquet files containing column-oriented data

FileDatastore Files with nonstandard file format

Requires a custom file reading function

Transform or combine existing datastores.

Datastore Description

CombinedDatastore Datastore to combine data read from multiple
underlying datastores

SequentialDatastore Sequentially read data from multiple underlying
datastores

TransformedDatastore Datastore to transform underlying datastore

Datastores to integrate with MapReduce and tall ar

rays.

Datastore Description

KeyValueDatastore Key-value pair data that are inputs to or outputs
of mapreduce

TallDatastore Datastore for checkpointing tall arrays

Datastores for Specific Applications

Based on your application use one of these datastores.

Select Datastore for File Format or Application

Application Datastore Description Toolbox Required
Simulink Model Data SimulationDatastor |Datastore for simulation |Simulink
e input and output data
that you use with a
Simulink model
Simulation Ensemble simulationEnsemble |Datastore to manage Predictive Maintenance
and Predictive Datastore simulation ensemble Toolbox™
Maintenance Data data
fileEnsembleDatast |Datastore to manage Predictive Maintenance
ore ensemble data in Toolbox
custom file format
Measurement Data mdfDatastore Datastore for collection |Vehicle Network
Format (MDF) Files of MDF files Toolbox™
mdfDatastore Datastore for collection |Powertrain Blockset™
of MDF files
Deep Learning pixelLabelDatastor |Datastore for pixel label | Computer Vision
e data Toolbox™ and Deep
Datastores for Learning Toolbox™
Preprocessing image or pixelLabelImageDat |Datastore for training |Computer Vision
sequence data . .
astore semantic segmentation |Toolbox and Deep
networks Learning Toolbox
Datastore is
nondeterministic
boxLabelDatastore |Datastore for bounding |Computer Vision
box label data Toolbox and Deep
Learning Toolbox
signalDatastore Datastore for collection |Signal Processing
of signal files Toolbox™ and Deep
Learning Toolbox
randomPatchExtract |Datastore for extracting |Image Processing
ionDatastore random patches from |Toolbox™ and Deep
images or pixel label Learning Toolbox
images
Datastore is
nondeterministic
denoisingImageData |Datastore to train an Image Processing
store image denoising deep |Toolbox and Deep

neural network

Datastore is
nondeterministic

Learning Toolbox

13-91

13 Large Data

13-92

Application Datastore Description Toolbox Required
augmentedImageData |Datastore for resizing |Deep Learning Toolbox
store and augmenting

training images
Datastore is
nondeterministic

Audio Data audioDatastore Datastore for collection |Audio Toolbox™

of audio files

Out-of-Memory Image |blockedImageDatast |Datastore to manage Image Processing

Data ore blocks of a single image |Toolbox

that is too large to fit in
memory
Database Data databaseDatastore |Datastore for collections|Database Toolbox

of data in a relational
database

Custom File Formats

For a collection of data in a custom file format, if each individual file fits in memory, use
FileDatastore along with your custom file reading function. Otherwise, develop your own fully
customized datastore for custom or proprietary data using the matlab.io.Datastore class. See
“Develop Custom Datastore” on page 13-109.

Nondeterministic Datastores

Datastores that do not return the exact same data for a call to the read function after a call to the
reset function are nondeterministic datastores. Do not use nondeterministic datastores with tall
arrays, mapreduce, or any other code that requires reading the data more than once.

Some applications require data that is randomly augmented or transformed. For example, the
augmentedImageDatastore datastore, from the deep learning application augments training image
data with randomized preprocessing operations to help prevent the network from overfitting and
memorizing the exact details of the training images. The output of this datastore is different every
time you perform a read operation after a call to reset.

See Also

TabularTextDatastore | SpreadsheetDatastore | ImageDatastore | FileDatastore |

TallDatastore | tall

More About

. “Getting Started with Datastore” on page 13-86

. “Tall Arrays for Out-of-Memory Data” on page 13-146

. “Develop Custom Datastore” on page 13-109

Work with Remote Data

Work with Remote Data

You can read and write data from a remote location using MATLAB functions and objects, such as file
I/0 functions and some datastore objects. These examples show how to set up, read from, and write
to remote locations on the following cloud storage platforms:

* Amazon S3 (Simple Storage Service)

* Azure Blob Storage (previously known as Windows Azure Storage Blob (WASB))

* Hadoop Distributed File System (HDFS)

Amazon S3

MATLAB lets you use Amazon S3 as an online file storage web service offered by Amazon Web
Services. When you specify the location of the data, you must specify the full path to the files or
folders using a uniform resource locator (URL) of the form

s3://bucketname/path to file
bucketname is the name of the container and path _to file is the path to the file or folders.

Amazon S3 provides data storage through web services interfaces. You can use a bucket as a
container to store objects in Amazon S3.

Set Up Access
To work with remote data in Amazon S3, you must set up access first:

Sign up for an Amazon Web Services (AWS) root account. See Amazon Web Services: Account.

2 Using your AWS root account, create an IAM (Identity and Access Management) user. See
Creating an IAM User in Your AWS Account.

3 Generate an access key to receive an access key ID and a secret access key. See Managing
Access Keys for IAM Users.

4 Configure your machine with the AWS access key ID, secret access key, and region using the
AWS Command Line Interface tool from https://aws.amazon.com/cli/. Alternatively, set the
environment variables directly by using setenv:

* AWS ACCESS KEY ID and AWS SECRET ACCESS KEY — Authenticate and enable use of
Amazon S3 services. (You generated this pair of access key variables in step 3.)

* AWS DEFAULT REGION (optional) — Select the geographic region of your bucket. The value
of this environment variable is typically determined automatically, but the bucket owner might
require that you set it manually.

* AWS SESSION TOKEN (optional) — Specify the session token if you are using temporary
security credentials, such as with AWS® Federated Authentication.

If you are using Parallel Computing Toolbox, you must ensure the cluster has been configured to
access S3 services. You can copy your client environment variables to the workers on a cluster by
setting EnvironmentVariables in parpool, batch, createJob, or in the Cluster Profile Manager.

Read Data from Amazon S3

The following example shows how to use an ImageDatastore object to read a specified image from
Amazon S3, and then display the image to screen.

13-93

https://aws.amazon.com/s3/
https://aws.amazon.com/account/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://aws.amazon.com/cli/

13 Large Data

setenv('AWS ACCESS KEY ID', 'YOUR AWS ACCESS KEY ID');
setenv('AWS SECRET ACCESS KEY', 'YOUR AWS SECRET ACCESS KEY');

ds = imageDatastore('s3://bucketname/image datastore/jpegfiles’,
‘IncludeSubfolders', true, 'LabelSource', 'foldernames');

img = ds.readimage(1l);

imshow(img)

Write Data to Amazon S3

The following example shows how to use a tabularTextDatastore object to read tabular data from
Amazon S3 into a tall array, preprocess it by removing missing entries and sorting, and then write it
back to Amazon S3.

setenv('AWS ACCESS KEY ID', 'YOUR AWS ACCESS KEY ID');
setenv('AWS SECRET ACCESS KEY', 'YOUR AWS SECRET ACCESS KEY');

ds = tabularTextDatastore('s3://bucketname/dataset/airlinesmall.csv', ...
'TreatAsMissing', 'NA', 'SelectedVariableNames', {'ArrDelay'});

tt = tall(ds);

tt = sortrows(rmmissing(tt));

write('s3://bucketname/preprocessedData/',tt);

To read your tall data back, use the datastore function.

ds
tt

datastore('s3://bucketname/preprocessedData/');
tall(ds);

Azure Blob Storage

MATLAB lets you use Azure Blob Storage for online file storage. When you specify the location of the
data, you must specify the full path to the files or folders using a uniform resource locator (URL) of
the form

wasbs://container@account/path to file/file.ext

container@account is the name of the container and path to_ file is the path to the file or
folders.

Azure provides data storage through web services interfaces. You can use a blob to store data files in
Azure. See What is Azure for more information.

Set Up Access

To work with remote data in Azure storage, you must set up access first:

1 Sign up for a Microsoft Azure account, see Microsoft Azure Account.

2 Set up your authentication details by setting exactly one of the two following environment
variables using setenv:

* MW WASB SAS TOKEN — Authentication via Shared Access Signature (SAS)

Obtain an SAS. For details, see the "Get the SAS for a blob container" section in Manage
Azure Blob Storage resources with Storage Explorer.

In MATLAB, set MW WASB_SAS TOKEN to the SAS query string. For example,

setenv MW _WASB_SAS_TOKEN '?st=2017-04-11T09%3A45%3A00Z&se=2017-05-12T09%3A45%3A00Z&sp=r1&sv=2015-12-11&sr=c&sig=l

13-94

https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/overview/what-is-azure/
https://azure.microsoft.com/en-us/
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-explorer-blobs
https://docs.microsoft.com/en-us/azure/vs-azure-tools-storage-explorer-blobs

Work with Remote Data

You must set this string to a valid SAS token generated from the Azure Storage web UI or
Explorer.

* MW _WASB SECRET_ KEY — Authentication via one of the Account's two secret keys

Each Storage Account has two secret keys that permit administrative privilege access. This
same access can be given to MATLAB without having to create an SAS token by setting the
MW WASB SECRET_KEY environment variable. For example:

setenv MW_WASB_SECRET_KEY '1234567890ABCDEF1234567890ABCDEF1234567890ABCDEF"'

If you are using Parallel Computing Toolbox, you must copy your client environment variables to the
workers on a cluster by setting EnvironmentVariables in parpool, batch, createJob, orin the
Cluster Profile Manager.

For more information, see Use Azure storage with Azure HDInsight clusters.
Read Data from Azure

To read data from an Azure Blob Storage location, specify the location using the following syntax:

wasbs://container@account/path to file/file.ext

container@account is the name of the container and path to_ file is the path to the file or
folders.

For example, if you have a file airlinesmall.csv in a folder /airline on a test storage account
wasbs://blobContainer@storageAccount.blob.core.windows.net/, then you can create a
datastore by using:

location = 'wasbs://blobContainer@storageAccount.blob.core.windows.net/airline/airlinesmall.csv';

ds = tabularTextDatastore(location, 'TreatAsMissing', 'NA',
'SelectedVariableNames', {'ArrDelay'});

You can use Azure for all calculations datastores support, including direct reading, mapreduce, tall
arrays and deep learning. For example, create an ImageDatastore object, read a specified image
from the datastore, and then display the image to screen.

setenv ('MW WASB SAS TOKEN', 'YOUR WASB SAS TOKEN');

ds = imageDatastore('wasbs://YourContainer@YourAccount.blob.core.windows.net/', ...
'IncludeSubfolders', true, 'LabelSource', 'foldernames');

img = ds.readimage(1);

imshow(img)

Write Data to Azure

This example shows how to read tabular data from Azure into a tall array using a
tabularTextDatastore object, preprocess it by removing missing entries and sorting, and then
write it back to Azure.

setenv ('MW _WASB_SAS TOKEN', 'YOUR WASB SAS TOKEN');

ds = tabularTextDatastore('wasbs://YourContainer@YourAccount.blob.core.windows.net/dataset/airlil
'TreatAsMissing', 'NA', 'SelectedVariableNames', {'ArrDelay'});

tt = tall(ds);

tt = sortrows(rmmissing(tt));

write('wasbs://YourContainer@YourAccount.blob.core.windows.net/preprocessedData/',tt);

To read your tall data back, use the datastore function.

13-95

https://docs.microsoft.com/en-us/azure/hdinsight/hdinsight-hadoop-use-blob-storage

13 Large Data

13-96

ds = datastore('wasbs://YourContainer@YourAccount.blob.core.windows.net/preprocessedData/"');
tt = tall(ds);

Hadoop Distributed File System
Specify Location of Data

MATLAB lets you use Hadoop Distributed File System (HDFS) as an online file storage web service.
When you specify the location of the data, you must specify the full path to the files or folders using a
uniform resource locator (URL) of one of these forms:

hdfs:/path to file
hdfs:///path to file

hdfs://hostname/path to file

hostname is the name of the host or server and path to file is the path to the file or folders.
Specifying the hostname is optional. When you do not specify the hostname, Hadoop uses the
default host name associated with the Hadoop Distributed File System (HDFS) installation in
MATLAB.

For example, you can use either of these commands to create a datastore for the file, filel.txt, in
a folder named data located at a host named myserver:

e ds = tabularTextDatastore('hdfs:///data/filel.txt")
e ds tabularTextDatastore('hdfs://myserver/data/filel.txt")

If hostname is specified, it must correspond to the namenode defined by the fs.default.name
property in the Hadoop XML configuration files for your Hadoop cluster.

Optionally, you can include the port number. For example, this location specifies a host named
myserver with port 7867, containing the file filel. txt in a folder named data:

"hdfs://myserver:7867/data/filel. txt"'
The specified port number must match the port number set in your HDFS configuration.
Set Hadoop Environment Variable

Before reading from HDFS, use the setenv function to set the appropriate environment variable to

the folder where Hadoop is installed. This folder must be accessible from the current machine.

* Hadoop v1 only — Set the HADOOP_HOME environment variable.

* Hadoop v2 only — Set the HADOOP_PREFIX environment variable.

» If you work with both Hadoop v1 and Hadoop v2, or if the HADOOP HOME and HADOOP PREFIX
environment variables are not set, then set the MATLAB_ HADOOP_INSTALL environment variable.

For example, use this command to set the HADOOP_HOME environment variable. hadoop- folder is
the folder where Hadoop is installed, and /mypath/ is the path to that folder.

setenv('HADOOP _HOME','/mypath/hadoop-folder');

Work with Remote Data

HDFS data on Hortonworks or Cloudera

If your current machine has access to HDFS data on Hortonworks or Cloudera®, then you do not have
to set the HADOOP_HOME or HADOOP PREFIX environment variables. MATLAB automatically assigns
these environment variables when using Hortonworks or Cloudera application edge nodes.

Prevent Clearing Code from Memory

When reading from HDFS or when reading Sequence files locally, the datastore function calls the
javaaddpath command. This command does the following:

* Clears the definitions of all Java classes defined by files on the dynamic class path
* Removes all global variables and variables from the base workspace
* Removes all compiled scripts, functions, and MEX-functions from memory

To prevent persistent variables, code files, or MEX-files from being cleared, use the mlock function.
Write Data to HDFS

This example shows how to use a tabularTextDatastore object to write data to an HDFS location.
Use the write function to write your tall and distributed arrays to a Hadoop Distributed File System.
When you call this function on a distributed or tall array, you must specify the full path to a HDFS
folder. The following example shows how to read tabular data from HDFS into a tall array, preprocess
it by removing missing entries and sorting, and then write it back to HDFS.

ds = tabularTextDatastore('hdfs://myserver/some/path/dataset/airlinesmall.csv', ...

ttlzr$:{??zi§?ingll 'NA', 'SelectedVariableNames', {'ArrDelay'});

tt = sortrows(rmmissing(tt));
write('hdfs://myserver/some/path/preprocessedData/',tt);

To read your tall data back, use the datastore function.

ds = datastore('hdfs://myserver/some/path/preprocessedData/"');
tt = tall(ds);
See Also

datastore | tabularTextDatastore |write | imageDatastore | imread | imshow |
javaaddpath | mlock | setenv

Related Examples
. “Read and Analyze Hadoop Sequence File” on page 13-107
. “Upload Deep Learning Data to the Cloud” (Deep Learning Toolbox)

13-97

13 Large Data

Read and Analyze Large Tabular Text File

13-98

This example shows how to create a datastore for a large text file containing tabular data, and then
read and process the data one block at a time or one file at a time.

Create a Datastore

Create a datastore from the sample file airlinesmall. csv using the tabularTextDatastore
function. When you create the datastore, you can specify that the text, NA, in the data is treated as
missing data.

ds = tabularTextDatastore('airlinesmall.csv', 'TreatAsMissing', 'NA');

You can modify the properties of the datastore by changing its properties. Modify the MissingValue
property to specify that missing values are treated as 0.

ds.MissingValue = 0;
In this example, select the variable for the arrival delay, ArrDelay, as the variable of interest.

ds.SelectedVariableNames = 'ArrDelay’;

Preview the data using the preview function. This function does not affect the state of the datastore.
data = preview(ds)

data=8x1 table
ArrDelay

8
8
21
13
4
59
3
11

Read Subsets of Data

By default, read reads from a TabularTextDatastore 20000 rows at a time. To read a different
number of rows in each call to read, modify the ReadSize property of ds.

ds.ReadSize = 15000;

Read subsets of the data from ds using the read function in a while loop. The loop executes until
hasdata(ds) returns false.

sums = [];

counts = [1];

while hasdata(ds)
T = read(ds);

sums (end+1) = sum(T.ArrDelay);

Read and Analyze Large Tabular Text File

counts(end+1) = length(T.ArrDelay);
end

Compute the average arrival delay.

avgArrivalDelay sum(sums)/sum(counts)

avgArrivalDelay = 6.9670

Reset the datastore to allow rereading of the data.
reset(ds)

Read One File at a Time

A datastore can contain multiple files, each with a different number of rows. You can read from the
datastore one complete file at a time by setting the ReadSize property to ' file'.

ds.ReadSize = 'file';

When you change the value of ReadSize from a numberto 'file' or vice versa, MATLAB® resets
the datastore.

Read from ds using the read function in a while loop, as before, and compute the average arrival
delay.

sums = [];

counts = [1;

while hasdata(ds)
T = read(ds);

sums (end+1) = sum(T.ArrDelay);
counts(end+1l) = length(T.ArrDelay);
end
avgArrivalDelay = sum(sums)/sum(counts)

avgArrivalDelay = 6.9670

See Also
tabularTextDatastore | tall | mapreduce

Related Examples

. “Tall Arrays for Out-of-Memory Data” on page 13-146
. “Getting Started with MapReduce” on page 13-3

13-99

13 Large Data

Read and Analyze Image Files

13-100

This example shows how to create a datastore for a collection of images, read the image files, and
find the images with the maximum average hue, saturation, and brightness (HSV). For a similar
example on image processing using the mapreduce function, see “Compute Maximum Average HSV
of Images with MapReduce” on page 13-80.

Identify two MATLAB® directories and create a datastore containing images with . jpg, .tif,
and .png extensions in those directories.

locationl
location2

fullfile(matlabroot, 'toolbox', 'matlab', 'demos');
fullfile(matlabroot, 'toolbox"', 'matlab', 'imagesci');

ds = imageDatastore({locationl,location2}, 'FileExtensions',{'.jpg"',"'.tif"," '.png'});

Initialize the maximum average HSV values and the corresponding image data.

maxAvgH = 0;
maxAvgS = 0;
maxAvgV = 0;
dataH = 0;
dataS = 0;
dataV = 0;

For each image in the collection, read the image file and calculate the average HSV values across all
of the image pixels. If an average value is larger than that of a previous image, then record it as the

new maximum (maxAvgH, maxAvgS, or maxAvgV) and record the corresponding image data (dataH,

datas, or dataV).

for i = 1l:length(ds.Files)
data = readimage(ds,i);
if ~ismatrix(data)
hsv = rgb2hsv(data);

Read the ith image
Only process 3-dimensional color data
Compute the HSV values from the RGB data

o® o o°

h = hsv(:,:,1); % Extract the HSV values

s = hsv(:,:,2);

v = hsv(:,:,3);

avgH = mean(h(:)); % Find the average HSV values across the image

avgS = mean(s(:));

avgV = mean(v(:));

if avgH > maxAvgH % Check for new maximum average hue
maxAvgH = avgH;
dataH = data;

end

if avgS > maxAvgS % Check for new maximum average saturation
maxAvgS = avgs;
dataS = data;

end

if avgV > maxAvgV % Check for new maximum average brightness
maxAvgV = avgV;
dataV = data;

Read and Analyze Image Files

end
end
end

View the images with the largest average hue, saturation, and brightness.

imshow(dataH, 'InitialMagnification','fit');
title('Maximum Average Hue')

Maximum Average Hue

figure
imshow(datasS, 'InitialMagnification','fit"');
title('Maximum Average Saturation');

13-101

13 Large Data

Maximum Average Saturation

figure
imshow(dataV, 'InitialMagnification', 'fit');
title('Maximum Average Brightness');

13-102

Read and Analyze Image Files

See Also
imageDatastore | tall | mapreduce

Related Examples

. “Tall Arrays for Out-of-Memory Data” on page 13-146
. “Getting Started with MapReduce” on page 13-3
. “Compute Maximum Average HSV of Images with MapReduce” on page 13-80

13-103

13 Large Data

Read and Analyze MAT-File with Key-Value Data

13-104

This example shows how to create a datastore for key-value pair data in a MAT-file that is the output
of mapreduce. Then, the example shows how to read all the data in the datastore and sort it. This
example assumes that the data in the MAT-file fits in memory.

Create a datastore from the sample file, mapredout.mat, using the datastore function. The sample
file contains unique keys representing airline carrier codes and corresponding values that represent
the number of flights operated by that carrier.

ds = datastore('mapredout.mat');

datastore returns a KeyValueDatastore. The datastore function automatically determines the
appropriate type of datastore to create.

Preview the data using the preview function. This function does not affect the state of the datastore.
preview(ds)

ans=1x2 table
Key Value

{'AA"} {[14930]}

Read all of the data in ds using the readall function. The readall function returns a table with two
columns, Key and Value.

T = readall(ds)
T=29x2 table

Key Value
{'AA' } {[14930]}
{'AS"' } {[29101}
{'CO0' } {[81381}
{'DL" } {[165781}
{'EA’ } {[920]}
{'HP' } {[36601}
{'ML (1)'} {[69]}
{"'Nw' } {[10349]}
{'PA (1)'} {[318]}
{'PT" } {[871]}
{'PS’ } {[83]}
{'Tw' } {[38051}
{'UA" } {[13286]1}
{'US"' } {[13997]1}
{'WN' } {[15931]1}
{ } {[154]}

IAQI

T contains all the airline and flight data from the datastore in the same order in which the data was
read. The table variables, Key and Value, are cell arrays.

Read and Analyze MAT-File with Key-Value Data

Convert Value to a numeric array.
T.Value = cell2mat(T.Value)
T=29x2 table

Key Value
{'AA" } 14930
{'AS"' } 2910
{'C0' } 8138
{'DL" } 16578
{'EA" } 920
{"'HP' } 3660
{'ML (1)'} 69
{"Nw' } 10349
{'PA (1)'} 318
{'PI' } 871
{'PS' } 83
{'TW' } 3805
{"UA" } 13286
{'us’ } 13997
{"WN' } 15931

} 154

{"AQ’

Assign new names to the table variables.
T.Properties.VariableNames = {'Airline', 'NumFlights'};
Sort the data in T by the number of flights.

T = sortrows (T, 'NumFlights', 'descend"')

T=29x2 table
Airline NumFlights

{'DL"} 16578
{'WN"} 15931
{'AA"} 14930
{'US"} 13997
{'UA"} 13286
{'Nw"} 10349
{'C0"} 8138
{'MQ"} 3962
{'TwW"} 3805
{'HP'} 3660
{'00"} 3090
{'AS"} 2910
{'XE"} 2357
{'EV'} 1699
{'OH"} 1457

{'FL"} 1263

View a summary of the sorted table.

13-105

13 Large Data

13-106

summary (T)

Variables:
Airline: 29x1 cell array of character vectors

NumFlights: 29x1 double

Values:
Min 69
Median 1457
Max 16578

Reset the datastore to allow rereading of the data.

reset(ds)

See Also
datastore | KeyValueDatastore | tall | mapreduce

Related Examples
. “Tall Arrays for Out-of-Memory Data” on page 13-146
. “Getting Started with MapReduce” on page 13-3

Read and Analyze Hadoop Sequence File

Read and Analyze Hadoop Sequence File

This example shows how to create a datastore for a Sequence file containing key-value data. Then,
you can read and process the data one block at a time. Sequence files are outputs of mapreduce
operations that use Hadoop.

Set the appropriate environment variable to the location where Hadoop is installed. In this case, set
the MATLAB HADOOP_ INSTALL environment variable.

setenv('MATLAB HADOOP INSTALL','/mypath/hadoop-folder"')
hadoop- folder is the folder where Hadoop is installed and mypath is the path to that folder.

Create a datastore from the sample file, mapredout. seq, using the datastore function. The sample
file contains unique keys representing airline carrier codes and corresponding values that represent
the number of flights operated by that carrier.

ds = datastore('mapredout.seq')

ds =
KeyValueDatastore with properties:

Files:

{
" ...\matlab\toolbox\matlab\demos\mapredout.seq'
}

ReadSize: 1 key-value pairs

FileType: 'seq'

datastore returns a KeyValueDatastore. The datastore function automatically determines the
appropriate type of datastore to create.

Set the ReadSize property to six so that each call to read reads at most six key-value pairs.
ds.ReadSize = 6;

Read subsets of the data from ds using the read function in a while loop. For each subset of data,
compute the sum of the values. Store the sum for each subset in an array named sums. The while
loop executes until hasdata(ds) returns false.

sums = [];
while hasdata(ds)
T = read(ds);

T.Value = cell2mat(T.Value);
sums (end+1) = sum(T.Value);
end

View the last subset of key-value pairs read.

T
T:

Key Value

"WN' 15931

'XE' 2357

13-107

13 Large Data

"YV! 849
‘ML (1) 69
"PA (1) 318

Compute the total number of flights operated by all carriers.

numflights

sum(sums)

numflights

123523

See Also
datastore | KeyValueDatastore | mapreduce | tall

Related Examples
. “Getting Started with MapReduce” on page 13-3
. “Tall Arrays for Out-of-Memory Data” on page 13-146

13-108

Develop Custom Datastore

Develop Custom Datastore

This topic shows how to implement a custom datastore for file-based data. Use this framework only
when writing your own custom datastore interface. Otherwise, for standard file formats, such as
images or spreadsheets, use an existing datastore from MATLAB. For more information, see “Getting
Started with Datastore” on page 13-86.

Overview

To build your custom datastore interface, use the custom datastore classes and objects. Then, use the
custom datastore to bring your data into MATLAB and leverage the MATLAB big data capabilities
such as tall, mapreduce, and Hadoop.

Designing your custom datastore involves inheriting from one or more abstract classes and
implementing the required methods. The specific classes and methods you need depend on your
processing needs.

Processing Needs Classes

Datastore for Serial Processing in MATLAB matlab.io.Datastore

See “Implement Datastore for Serial Processing”
on page 13-110

Datastore with support for Parallel Computing matlab.io.Datastore and
Toolbox and MATLAB Parallel Server matlab.io.datastore.Partitionable

See “Add Support for Parallel Processing” on
page 13-112

Datastore with support for Hadoop matlab.io.Datastore and
matlab.io.datastore.HadoopLocationBase
d

See “Add Support for Hadoop” on page 13-113

Datastore with support for shuffling samples ina |matlab.io.Datastore and
datastore in random order matlab.io.datastore.Shuffleable

See “Add Support for Shuffling” on page 13-114

Datastore with support for writing files via matlab.io.Datastore and
writeall matlab.io.datastore.FileWritable

(Optionally, inheriting from
matlab.io.datastore.FoldersPropertyPro
vider adds support for a Folders property.)

See “Add Support for Writing Data” on page 13-
115

Start by implementing datastore for serial processing, and then add support for parallel processing,
Hadoop, shuffling, or writing.

13-109

13 Large Data

Implement Datastore for Serial Processing

To implement a custom datastore named MyDatastore, create a script MyDatastore.m. The script
must be on the MATLAB path and should contain code that inherits from the appropriate class and
defines the required methods. The code for creating a datastore for serial processing in MATLAB
must:

* Inherit from the base class matlab.io.Datastore.
* Define these methods: hasdata, read, reset, and progress.
* Define additional properties and methods based on your data processing and analysis needs.

For a sample implementation, follow these steps.

Steps Implementation

Inherit from the base classdef MyDatastore < matlab.io.Datastore

class Datastore.
properties (Access = private)
CurrentFileIndex double
FileSet matlab.io.datastore.DsFileSet
end

Add this property to
create a datastore on one
machine that works
seamlessly on another
machine or cluster that
possibly has a different

Property to support saving, loading, and processing of
datastore on different file system machines or clusters.

In addition, define the methods get.AlternateFileSystemRoots()
and set.AlternateFileSystemRoots() in the methods section.
properties(Dependent)

AlternateFileSystemRoots

o o o° o°

’ end
file system or operating
system.
Add methods to get and
set this property in the
methods section.
Implement the function methods % begin methods section
MyDatastore that
creates the custom function myds = MyDatastore(location,altRoots)
datastore myds.FileSet = matlab.io.datastore.DsFileSet(location,...
' '"FileExtensions','.bin',
'"FileSplitSize',8*1024);
myds.CurrentFileIndex = 1;
if nargin ==
myds.AlternateFileSystemRoots = altRoots;
end
reset(myds);
end
Implement the hasdata function tf = hasdata(myds)
method. % Return true if more data is available.
tf = hasfile(myds.FileSet);
end

13-110

Develop Custom Datastore

Steps

Implement the read
method.

This method uses
MyFileReader, which is
a function that you must
create to read your
proprietary file format .

See “Create Function to
Read Your Proprietary File
Format” on page 13-112.

Implement the reset
method.

Define the methods to get
and set the
AlternateFileSystemR
oots property.

You must reset the
datastore in the set
method.

Implement the progress
method.

Implementation

function [data,info] = read(myds)
% Read data and information about the extracted data.
if ~hasdata(myds)
error(sprintf(['No more data to read.\nUse the reset ',

'method to reset the datastore to the start of ' ,...
'the data. \nBefore calling the read method, ',...
'check if data is available to read '
'by using the hasdata method.']))

end

fileInfoTbl = nextfile(myds.FileSet);
data = MyFileReader(fileInfoTbl);
info.Size = size(data);

info.FileName = fileInfoTbl.FileName;
info.0ffset = fileInfoTbl.0ffset;

% Update CurrentFileIndex for tracking progress
if fileInfoTbl.0ffset + fileInfoTbl.SplitSize >= ...
fileInfoTbl.FileSize
myds.CurrentFileIndex = myds.CurrentFileIndex + 1 ;
end

end

function reset(myds)
% Reset to the start of the data.
reset(myds.FileSet);
myds.CurrentFileIndex = 1;

end

%
5

Before defining these methods, add the AlternateFileSystemRoots
% property in the properties section
% Getter for AlternateFileSystemRoots property
function altRoots = get.AlternateFileSystemRoots (myds)
altRoots = myds.FileSet.AlternateFileSystemRoots;
end

% Setter for AlternateFileSystemRoots property
function set.AlternateFileSystemRoots(myds,altRoots)
try
% The DsFileSet object manages the AlternateFileSystemRoots
% for your datastore
myds.FileSet.AlternateFileSystemRoots = altRoots;

% Reset the datastore
reset(myds);
catch ME
throw(ME) ;
end
end

end

methods (Hidden = true)
function frac = progress(myds)

% Determine percentage of data read from datastore

if hasdata(myds)

frac = (myds.CurrentFileIndex-1)/...
myds.FileSet.NumFiles;

else
frac = 1;

end

end
end

13-111

13 Large Data

Steps Implementation
Implement the methods (Access = protected)
copyElement method % If you use the DsFileSet object as a property, then

you must define the copyElement method. The copyElement
method allows methods such as readall and preview to

% remain stateless

function dscopy = copyElement(ds)

o® 0P of

when you use the
DsFileSet object as a
property in your

datastore. dscopy = copyElement@matlab.mixin.Copyable(ds);
dscopy.FileSet = copy(ds.FileSet);
end
end
End the classdef end
section.

Create Function to Read Your Proprietary File Format

The implementation of the read method of your custom datastore uses a function called
MyFileReader. You must create this function to read your custom or proprietary data. Build this
function using DsFileReader object and its methods. For instance, create a function that reads
binary files.

function data = MyFileReader(fileInfoTbl)
% create a reader object using the FileName
reader = matlab.io.datastore.DsFileReader(fileInfoTbl.FileName);

% seek to the offset
seek(reader,fileInfoTbl.0ffset, 'Origin', 'start-of-file');

% read fileInfoTbl.SplitSize amount of data

data = read(reader,fileInfoTbl.SplitSize);
end

Add Support for Parallel Processing

To add support for parallel processing with Parallel Computing Toolbox and MATLAB Parallel Server,
update your implementation code in MyDatastore.m to:

e Inherit from an additional class matlab.io.datastore.Partitionable.
* Define two additional methods: maxpartitions and partition.

For a sample implementation, follow these steps.

Steps Implementation
Update the classdef classdef MyDatastore < matlab.io.Datastore & ...
section to inherit from the matlab.io.datastore.Partitionable

Partitionable class.

13-112

Develop Custom Datastore

Steps Implementation

Add the definition for methods
partition to the
methods section.

function subds = partition(myds,n,ii)
subds = copy(myds);
subds.FileSet = partition(myds.FileSet,n,ii);

reset(subds);
end
end
Add definition for methods (Access = protected)
maxpartitions to the function n = maxpartitions(myds)
methods section. n = maxpartitions(myds.FileSet);
end
end
End classdef. end

Add Support for Hadoop

To add support for Hadoop, update your implementation code in MyDatastore.m to:

* Inherit from an additional class matlab.io.datastore.HadoopLocationBased.
* Define two additional methods: getLocation and initializeDatastore.

For a sample implementation, follow these steps.

Steps Implementation

Update the classdef classdef MyDatastore < matlab.io.Datastore & ...

section to inherit from the matlab.io.datastore.HadoopLocationBased
HadoopLocationBased

class.

13-113

13 Large Data

13-114

Steps Implementation

Add the definition for methods (Hidden = true)
getLocation, .
initializeDatastore,
and isfullfile
(optional) to the methods

. function initializeDatastore(myds,hadoopInfo)
section.

import matlab.io.datastore.DsFileSet;
myds.FileSet = DsFileSet(hadoopInfo,...
"FileSplitSize',myds.FileSet.FileSplitSize);
reset(myds);
end

function loc = getlLocation(myds)
loc = myds.FileSet;
end

% isfullfile method is optional
function tf = isfullfile(myds)

tf = isequal(myds.FileSet.FileSplitSize, 'file');
end

end

End the classdef end
section.

Add Support for Shuffling

To add support for shuffling, update your implementation code in MyDatastore.m to:

* Inherit from an additional class matlab.io.datastore.Shuffleable.
* Define the additional method shuffle.

For a sample implementation, follow these steps.

Steps Implementation
Update the classdef classdef MyDatastore < matlab.io.Datastore & ...

section to inherit from the matlab.io.datastore.Shuffleable
Shuffleable class. '

Develop Custom Datastore

Steps Implementation
Add the definition for methods
shuffle to the existing

methods section. % previously defined methods

function dsNew = shuffle(ds)
% dsNew = shuffle(ds) shuffles the files and the
% corresponding labels in the datastore.

% Create a copy of datastore

dsNew = copy(ds);

dsNew.Datastore = copy(ds.Datastore);
fds = dsNew.Datastore;

% Shuffle files and corresponding labels
numObservations = dsNew.NumObservations;
idx = randperm(numObservations);
fds.Files = fds.Files(idx);
dsNew.Labels = dsNew.Labels(idx);

end

end

End the classdef end
section.

Add Support for Writing Data

To add support for writing data, update your implementation code in MyDatastore.m to follow these
requirements:

* Inherit from an additional class matlab.io.datastore.FileWritable.

* [Initialize the properties SupportedOutputFormats and DefaultOutputFormat.

* Implement a write method if the datastore writes data to a custom format.

* Implement a getFiles method if the datastore does not have a Files property.

* Implement a getFolders method if the datastore does not have a Folders property.

* The output location is validated as a string. If your datastore requires further validation, you must
implement a validateOutputLocation method.

» If the datastore is meant for files that require multiple reads per file, then you must implement the
methods getCurrentFilename and currentFileIndexComparator.

* Optionally, inherit from another class matlab.io.datastore.FoldersPropertyProvider to
add support for a Folders property (and thus the FolderLayout name-value pair of writeall).
If you do this, then you can use the populateFoldersFromLocation method in the datastore
constructor to populate the Folders property.

* To add support for the 'UseParallel' option of writeall, you must subclass from both
matlab.io.datastore.FileWritable and matlab.io.datastore.Partitionable and
implement a partition method in the subclass that supports the syntax
partition(ds, 'Files',index).

13-115

13 Large Data

13-116

For a sample implementation that inherits from matlab.io.datastore.FileWritable, follow

these steps.

Steps

Update the classdef
section to inherit from the
FileWritable class.

Initialize the properties
SupportedOutputForma
ts and
DefaultOutputFormat.
In this example, the
datastore supports all of
the output formats of
ImageDatastore, as well
as a custom format
"dcm", which is also
declared as the default
output format.

Add definitions for
getFiles and
getFolders to the
existing methods section.
These methods are
required when the
datastore does not have
Files or Folders
properties.

Add a write method
when the datastore
intends to write data to a
custom format. In this
example, the method
switches between using a
custom write function for
"dcm" and the built-in
write function for known
formats.

End the classdef
section.

Implementation
classdef MyDatastore < matlab.io.Datastore & ...

matlab.io.datastore.FileWritable

properties (Constant)
SupportedOutputFormats = ...
[matlab.io.datastore.ImageDatastore.SupportedOutputFormats, "dcm"];
DefaultOutputFormat = "dcm";

end

methods (Access = protected)
function files = getFiles(ds)

files = {'data/folder/filel', 'data/folder/file2',...
end
function folders = getFolders(ds)

folders = {'data/folderl/', 'data/folder2/',...};

end
end

methods (Access = protected)
function tf = write(myds, data, writeInfo, outFmt, varargin)
if outFmt == "dcm" % use custom write fcn for dcm format
dicomwrite(data, writeInfo.SuggestedOutputName, varargin{:});
else % callback into built-in for known formats
write@matlab.io.datastore.FileWritable(myds, data, ...
writeInfo, outFmt, varargin{:});
end
tf = true;
end
end

end

For a longer example class that inherits from both matlab.io.datastore.FileWritable and

matlab.io.datastore.FoldersPropertyProvider, see “Develop Custom Datastore for DICOM

Data” on page 13-126.

Develop Custom Datastore

Validate Custom Datastore

After following the instructions presented here, the implementation step of your custom datastore is
complete. Before using this custom datastore, qualify it using the guidelines presented in “Testing
Guidelines for Custom Datastores” on page 13-118.

See Also

matlab.io.Datastore |matlab.io.datastore.Partitionable |
matlab.io.datastore.HadoopLocationBased | matlab.io.datastore.Shuffleable |
matlab.io.datastore.DsFileSet | matlab.io.datastore.DsFileReader |
matlab.io.datastore.FoldersPropertyProvider | matlab.io.datastore.FileWritable

More About

. “Developing Classes That Work Together”
. “Create and Share Toolboxes”

. “Create Help for Classes”

. “Develop Custom Datastore for DICOM Data” on page 13-126

13-117

13 Large Data

Testing Guidelines for Custom Datastores

13-118

All datastores that are derived from the custom datastore classes share some common behaviors. This
test procedure provides guidelines to test the minimal set of behaviors and functionalities that all
custom datastores should have. You will need additional tests to qualify any unique functionalities of
your custom datastore.

If you have developed your custom datastore based on instructions in “Develop Custom Datastore” on
page 13-109, then follow these test procedures to qualify your custom datastore. First perform the
unit tests, followed by the workflow tests:

* Unit tests qualify the datastore constructor and methods.
» Workflow tests qualify the datastore usage.

For all these test cases:

* Unless specified in the test description, assume that you are testing a nonempty datastore ds.

» Verify the test cases on the file extensions, file encodings, and data locations (like Hadoop) that
your custom datastore is designed to support.

Unit Tests

Construction

The unit test guidelines for the datastore constructor are as follows.

Test Case Description Expected Output

Check if your custom datastore constructor works with the Datastore object of your custom

minimal required inputs. datastore type with the minimal
expected properties and methods

Check if your datastore object ds has 1lor true

matlab.io.Datastore as one of its superclasses.

Run this command:

isa(ds, 'matlab.io.Datastore")

Call your custom datastore constructor with the required Datastore object of your custom
inputs and any supported input arguments and name-value datastore type with the minimal
pair arguments. expected properties and methods
read

Unit test guidelines for the read method

Test Case Description Expected Output

Call the read method on a datastore object ds. Data from the beginning of the datastore

t = read(ds); If you specify read size, then the size of
the returned data is equivalent to read
size.

Testing Guidelines for Custom Datastores

Test Case Description
Call the read method again on the datastore object.

t = read(ds);

Continue calling the read method on the datastore object
in a while loop.

while(hasdata(ds))
t = read(ds);
end

When data is available to read, check the info output (if
any) of the read method.

Call a datastore object ds.

[t,info] =

When no more data is available to read, call read on the
datastore ohject.

read(ds);

readall
Unit test guidelines for the readall method

Test Case Description
Call the readall method on the datastore object.

Call the readall method on the datastore object, when
hasdata(ds) is false.

Read from the datastore until hasdata(ds) is false, and
then call the readall method.

while(hasdata(ds))
t = read(ds);
end

readall(ds)

hasdata
Unit test guidelines for the hasdata method

Test Case Description

Call the hasdata method on the datastore object before
making any calls to read

Call the hasdata method on the datastore object after
making a few calls to read, but before all the data is read

Expected Output

Data starting from the end point of the
previous read operation

If you specify read size, then the size of
the returned data is equivalent to read
size.

No errors

Correct data in the correct format

No error
info contains the expected information

t contains the expected data

Either expected output or an error
message based on your custom
datastore implementation.

Expected Output
All data
All data

Expected Output
true

true

13-119

13 Large Data

13-120

Test Case Description

When more data is available to read, call the readall
method, and then call the hasdata method.

When no more data is available to read, call the hasdata
method.

reset
Unit test guidelines for the reset method

Test Case Description

Call the reset method on the datastore object before
making any calls to the read method.

Verify that the read method returns the appropriate data
after a call to the reset method.

reset(ds);

t = read(ds);

When more data is available to read, call the reset
method after making a few calls to the read method.

Verify that the read method returns the appropriate data
after making a call to the reset method.

When more data is available to read, call the reset
method after making a call to the readall method.

Verify that the read method returns the appropriate data
after making a call to the reset method.

When no more data is available to read, call the reset
method on the datastore object and then call the read
method

Verify that read returns the appropriate data after a call
to the reset method.

progress
Unit test guidelines for the progress method

Test Case Description

Call the progress method on the datastore object before
making any calls to the read method.

Expected Output
true

false

Expected Output
No errors

The read returns data from the
beginning of the datastore.

If you specify read size, then the size of
the returned data is equivalent to read
size.

No errors

The read method returns data from the
beginning of the datastore.

If you specify read size, then the size of
the returned data is equivalent to read
size.

No errors

The read method returns data from the
beginning of the datastore.

If you specify read size, then the size of
the returned data is equivalent to read
size.

No errors

The read method returns data from the
beginning of the datastore.

If you specify read size, then the size of
the returned data is equivalent to read
size.

Expected Output

0 or an expected output based on your
custom datastore implementation.

Testing Guidelines for Custom Datastores

Test Case Description

Call the progress method on the datastore object after
making a call to readall, but before making any calls to
read

readall(ds);
progress(ds)

Call the progress method on the datastore object after
making a few calls to read and while more data is
available to read.

Call the progress method on the datastore object when
no more data is available to read.

preview
Unit test guidelines for the preview method

Test Case Description

Call preview on the datastore object before making any
calls to read.

Call preview on the datastore object after making a few
calls to read and while more data is available to read.

Call preview on the datastore object after making a call
to readall and while more data is available to read.

Call preview on the datastore object after making a few
calls to read and a call to reset.

Call preview on the datastore object when no more data
is available to read.

Expected Output

0 or an expected output based on your
custom datastore implementation.

A fraction between 0 and 1 or an
expected output based on your custom
datastore implementation.

1 or an expected output based on your
custom datastore implementation.

Expected Output

The preview method returns the
expected data from the beginning of the
datastore, based on your custom
datastore implementation.

The preview method returns the
expected data from the beginning of the
datastore, based on your custom
datastore implementation.

The preview method returns the
expected data from the beginning of the
datastore, based on your custom
datastore implementation.

The preview method returns the
expected data from the beginning of the
datastore, based on your custom
datastore implementation.

The preview method returns the
expected data from the beginning of the
datastore, based on your custom
datastore implementation.

Call preview after making a few calls to read method and The read method returns data starting

then call read again.

Call preview, and then call readall on the datastore.

from the end point of the previous read
operation.

If you specify read size, then the size of
the returned data is equivalent to read
size.

The readall method returns all the
data from the datastore.

13-121

13 Large Data

Test Case Description

While datastore has data available to read, call preview,
and then call hasdata.

partition
Unit test guidelines for the partition method

Test Case Description

Call partition on the datastore object ds with a valid
number of partitions and a valid partition index.

Call read on a partition of the datastore and verify the
data.

subds = partition(ds,n,index)
read(subds)

Verify that the partition is valid.

isequal(properties(ds),properties(subds))
isequal(methods(ds),methods(subds))

Expected Output
The hasdata method returns true.

Expected Output

The partition method partitions the
datastore into n partitions and returns
the partition corresponding to the
specified index.

The returned partition subds must be a
datastore object of your custom
datastore.

The partitioned datastore subds must
have the same methods and properties
as the original datastore.

The isequal statement returns true.

Calling read on the partition returns
data starting from the beginning of the
partition.

If you specify read size, then the size of
the returned data is equivalent to read
size.

Call partition on the datastore object ds with number of The partition subds must be a datastore

partitions specified as 1 and index of returned partition
specified as 1.

object of your custom datastore.

The partition subds must have the same

Verify the data returned by calling read and preview on a methods and properties as the original

partition of the partitioned datastore.

subds = partition(ds,1,1)
isequal(properties(ds),properties(subds))
isequal(methods(ds),methods(subds))
isequaln(read(subds), read(ds))
isequaln(preview(subds),preview(ds))

Call partition on the partition subds with a valid
number of partitions and a valid partition index.

initializeDatastore

datastore ds.

The isequal and isequaln statements
returns true.

The repartitioning of a partition of the
datastore should work without errors.

If your datastore inherits from matlab.io.datastore.HadoopFileBased, then verify the
behavior of initializeDatastore using the guidelines in this table.

Testing Guidelines for Custom Datastores

Test Case Description Expected Output

Call initializeDatastore on the datastore object ds The initializeDatastore method

with a valid info struct. initializes the custom datastore object
ds with the necessary information from

The info struct contains these fields: the info struct.

* FileName
« Offset
e Size

FileName is of data type char and the fields 0ffset and
Size are of the data type double.

For example, initialize the info struct, and then call
initializeDatastore on the datastore object ds.

info = struct('FileName', 'myFileName.ext',...

'Offset',0,'Size',500)
initializeDatastore(ds,info)

Verify the initialization by examining the properties of your
datastore object.

ds

getLocation

If your datastore inherits from matlab.io.datastore.HadoopFileBased, then verify the
behavior of getLocation using these guidelines.

Test Case Description Expected Output

Call getLocation on the datastore object. The getLocation method returns the
location of files in Hadoop.
location = getLocation(ds)

Based on your custom datastore implementation, the
location output is either of these:

o List of files or directories
* amatlab.io.datastore.DsFileSet object

If locationisamatlab.io.datastore.DsFileSet
object, then call resolve to verify the files in the
location output.

resolve(location)

isfullfile

If your datastore inherits from matlab.io.datastore.HadoopFileBased, then verify the
behavior of isfullfile using these guidelines.

13-123

13 Large Data

13-124

Test Case Description
Call isfullfile on the datastore object.

Workflow Tests

Verify your workflow tests in the appropriate environment.

Expected Output

Based on your custom datastore
implementation, the isfullfile
method returns true or false.

* Ifyour datastore inherits only from matlab.io.Datastore, then verify all workflow tests in a

local MATLAB session.

» Ifyour datastore has parallel processing support (inherits from
matlab.io.datastore.Partitionable), then verify your workflow tests in parallel execution
environments, such as Parallel Computing Toolbox and MATLAB Parallel Server.

* If your datastore has Hadoop support (inherits from

matlab.io.datastore.HadoopFileBased), then verify your workflow tests in a Hadoop

cluster.
Tall Workflow
Testing guidelines for the tall workflow

Test Case Description

Create a tall array by calling tall on the datastore object
ds.

t = tall(ds)

For this test step, create a datastore object with data that
fits in your system memory. Then, create a tall array using
this datastore object.

t = tall(ds)

Expected Output

The tall function returns an output
that is the same data type as the output
of the read method of the datastore.

No errors

The function returns an output of the
correct data type (not of a tall data

type).

If your data is numeric, then apply an appropriate function The function returns the same result

like the mean function to both the ds and t, then compare
the results.

If your data is of the data type string or categorical,
then apply the unique function on a column of ds and a
column of t, then compare the results.

Apply gather and verify the result.

For examples, see “Big Data Workflow Using Tall Arrays
and Datastores” (Parallel Computing Toolbox).

MapReduce Workflow

Testing guidelines for the MapReduce workflow

whether it is applied to ds or to t.

Testing Guidelines for Custom Datastores

Test Case Description Expected Output
Call mapreduce on the datastore object ds. No error
outds = mapreduce(ds,@mapper,@reducer) The MapReduce operation returns the

. . expected result
For more information, see mapreduce.

To support the use of the mapreduce function, the read
method of your custom datastore must return both the
info and the data output arguments.

Next Steps

Note This test procedure provides guidelines to test the minimal set of behaviors and functionalities
for custom datastores. Additional tests are necessary to qualify any unique functionalities of your
custom datastore.

After you complete the implementation and validation of your custom datastore, your custom
datastore is ready to use.

* To add help for your custom datastore implementation, see “Create Help for Classes”.

* To share your custom datastore with other users, see “Create and Share Toolboxes”.

See Also
matlab.io.Datastore |matlab.io.datastore.Partitionable |
matlab.io.datastore.HadooplLocationBased

More About

. “Develop Custom Datastore” on page 13-109
. “Create and Share Toolboxes”

. “Create Help for Classes”

13-125

13 Large Data

Develop Custom Datastore for DICOM Data

13-126

This example shows how to develop a custom datastore that supports writing operations. The
datastore is named DICOMDatastore because it supports DICOM ® (Digital Imaging and
Communications in Medicine) data, which is an international standard for medical imaging
information.

Developing Custom Datastores

The topic “Develop Custom Datastore” on page 13-109 describes the general process for creating a
custom datastore, as well as the specific requirements to add different pieces of functionality. There
are a variety of superclasses you can subclass from depending on what pieces of functionality you
need (parallel evaluation, writing operations, shuffling, and so on). In particular, you can add support
for writing operations by subclassing from matlab.io.datastore.FileWritable. However, for
the broadest set of writing functionality, you must also subclass from
matlab.io.datastore.FoldersPropertyProvider, which adds a Folders property to the
datastore. The complete requirements to add writing support to a custom datastore are covered in
“Add Support for Writing Data” on page 13-115.

Class Definition

This table contains code and explanations for the DICOMDatastore class.

classdef DICOMDatastore < matlab.io.Datastq€daSs.Header
matlab.io.datastqre.FileWritable & ...
matlab.io.datastqDbd (GMDetaktapes tyReovd deom Datastore for
basic functionality, as well as from
FileWritable and
FoldersPropertyProvider to enable file
writing capabilities.

properties Public Properties
Files matlab.io.datastore.FileSet

end DICOMDatastore defines a public Files
property that is a FileSet object.
DICOMDatastore inherits a Folders property
from FoldersPropertyProvider, so that
property does not need to be initialized.

properties (Constant) DICOMDatastore defines
SupportedOutputFormats =

[matlab.io.datastore. IméééDatastore .Support aMQﬂRFM?&yt'ﬂ%EP rmats and

DefaultOutputFormat = "dcm"; DefaultOutputFormat as constant properties
end with default values. "dcm" is a custom format for
DICOM data.

https://www.dicomstandard.org/
https://www.dicomstandard.org/

Develop Custom Datastore for DICOM Data

methods (Access

public)

function myds = DICOMDatastore(locg
% The class constructor to set
myds.Files = matlab.io.dataston
"IncludeSubfolders", true);
populateFoldersFromLocation(myd
reset (myds);

end

Public Methods

THMublic methods section defines common
@Q%&iﬁ?ﬂo@%hﬂﬂﬂétﬁﬁs uses to

?ﬁaﬁip% Gte d3t8 "PABlic methods are externally

gl’cggggplg,n Q class users of DICOMDatastore

can call theZe methods (in addition to other

public methods inherited from the superclasses).

The constructor DICOMDatastore creates a new
DICOMDatastore object by setting values for the
Files and Folders properties.

Use FileSet to set the value of the Files
property.
Use the populateFoldersFromLocation

method of FoldersPropertyProvider to
set the value of the Folders property.

function tf = hasdata(myds)

%HASDATA Returns true if more
% Return logical scalar indigq
% This method should be calld
% is an abstract method and n
% subclasses. hasdata is used
% read all the data within th
tf = hasNextFile(myds.Files);

end

The hasdata, read, reset, and progress
nigthivdssdefine thelinfrastructure for the
dAhtastoreto Wtk Wit P Sm@l éhunks of data at a
gir@@ "heseH L:lé’@stgﬁﬁg n%%ﬂft?ds that must be
us e e

irhp1éiersa Y 1he subclads,

e datastore.

function [data, infol

end

read (myds)

%READ Read data and information about the extr]
Return the data extracted from the datastore
appropriate form for this datastore. Also re
information about where the data was extract
the datastore. Both the outputs are required
returned from the read method and can be of

info is recommended to be a struct with info
about the chunk of data read. data represent
underlying class of tall, if tall is created|
this datastore. This is an abstract method a
implemented by the subclasses.

0° o° o of o° o° o of o° of

In this example, the read method reads data fr]

datastore using a custom reader function, MyFi

which takes the resolved filenames as input.

if ~hasdata(myds)

error("No more data to read.\nUse reset meth
+ "reset the datastore to the start of t
+ "calling the read method, check if dat
+ "to read by using the hasdata method."

o° o° of

end

file = nextfile(myds.Files);

try

data = dicomread(file.Filename);
catch ME

error("%s has failed", file.FileName);
end

info.FileSize
info.Filename

size(data);
file.Filename;

bcted data.
in the
fturn

ed from in
to be

any type.
rmation

s the

on top of
hd must be

om the
LeReader,

bd to "

he data. Before "
B is available "
) ;

13-127

13 Large Data

function reset(myds)

%RESET Reset to the start of
Reset the datastore to the
read from it. This is an aj
implemented by the subclasgq

o® o° o°

In this example, the datasto
first file (and first partiti
reset(myds.Files);

o® o°

end

end

function frac = progress(myds)

%PROGRESS Percentage of consumed data between
Return fraction between 0.0 and 1.0 indicati
double. The provided example implementation
ratio of the index of the current file from
to the number of files in FileSet. A simplerf
implementation can be used here that returns
the data has been read from the datastore, 4
otherwise.

See also matlab.io.Datastore, read, hasdata,
preview.

frac = progress(myds.Files);
end

o o° o° o o° o° o° of o° of

the data.

state where no data has been
stract method and must be
es.

e is reset to point to the
on) in the datastore.

P.0 and 1.0.

hg progress as a
returns the
FileSet

reset, readall,

methods (Access

= protected)

function dsCopy = copyElement(myds
%COPYELEMENT Create a deep cqpyp
Create a deep copy of the g
copy on the datastore's prc
a handle object. Creating g
such as readall and previe
to remain stateless.
dsCopy = copyElement@matlab.mix
dsCopy.Files = copy(myds.Files

o° o° o° o° o°

Protected Methods

Protected methods redefine methods that were
1t§ Py e el and gey are only
aze 835ible HEDTEOMDLt A<t ore. For more

align. See oModity Inherited Methods”.

Thvéhﬁfgtecc eé copyEci emﬁft met’hod is required

whenrgNaibid LRRRY is used to define properties.

The copyElement method allows methods such

end as readall and preview to remain stateless.
function tf = write(myds, data, writeInfo, outFmt, va‘[‘ﬁeip)rotected write method writes out chunks
if outFmt == "dcm"

dicomwrite(data, writeInfo.SuggestedOutputNa|
else
write@matlab.io.datastore.FileWritable(myds,
writeInfo, outFmt, varargin{:});
end
tf = true;
end

mef datagisinpe DICOMDatastore supports
InageDatastore formats as well as the custom
format "dcm", the write method uses different
functions to write the data depending on the
output format.

end

function files getFiles(myds)
files myds.Files.FileInfo.Fil

end

The protected getFiles method is necessary

siameDICOMDatastore uses FileSet objects
for the Files property. The Files property is
generally required to return a cellstr, so the
getFiles method uses the FileSet object to
generate a cellstr of the file paths.

end

End the classdef section.

Expand for Class Code

classdef DICOMDatastore <

matlab.io.Datastore & ...
matlab.io.datastore.FileWritable

& ...

matlab.io.datastore.FoldersPropertyProvider

properties

end

13-128

Files matlab.io.datastore.FileSet

Develop Custom Datastore for DICOM Data

properties (Constant)

SupportedOutputFormats = ...
[matlab.io.datastore.ImageDatastore.SupportedOutputFormats, "dcm"];
DefaultOutputFormat = "dcm";

methods (Access = public)

function myds = DICOMDatastore(location)
% The class constructor to set properties of the datastore.
myds.Files = matlab.io.datastore.FileSet(location,
"IncludeSubfolders", true);
populateFoldersFromLocation(myds, location);
reset(myds);
end

function tf = hasdata(myds)

%HASDATA Returns true if more data is available.
Return logical scalar indicating availability of data.
This method should be called before calling read. This
is an abstract method and must be implemented by the
subclasses. hasdata is used in conjunction with read to
read all the data within the datastore.

tf = hasNextFile(myds.Files);
end

o o° o° of o°

function [data, info] = read(myds)

%READ Read data and information about the extracted data.
Return the data extracted from the datastore in the
appropriate form for this datastore. Also return
information about where the data was extracted from in
the datastore. Both the outputs are required to be
returned from the read method and can be of any type.
info is recommended to be a struct with information
about the chunk of data read. data represents the
underlying class of tall, if tall is created on top of
this datastore. This is an abstract method and must be
implemented by the subclasses.

0 o° d° o o° o° o° of o° o°

In this example, the read method reads data from the

datastore using a custom reader function, MyFileReader,

which takes the resolved filenames as input.

if ~hasdata(myds)

error("No more data to read.\nUse reset method to "
+ "reset the datastore to the start of the data. Before "
+ "calling the read method, check if data is available "
+ "to read by using the hasdata method.");

o o° o°

end

file = nextfile(myds.Files);
try
data = dicomread(file.Filename);
catch ME
error("%s has failed", file.FileName);
end

info.FileSize
info.Filename
end

size(data);
file.Filename;

function reset(myds)

%RESET Reset to the start of the data.
Reset the datastore to the state where no data has been
read from it. This is an abstract method and must be
implemented by the subclasses.

o° o° o°

In this example, the datastore is reset to point to the

first file (and first partition) in the datastore.
reset(myds.Files);

end

o° o°

function frac = progress(myds)

%PROGRESS Percentage of consumed data between 0.0 and 1.0.
Return fraction between 0.0 and 1.0 indicating progress as a
double. The provided example implementation returns the
ratio of the index of the current file from FileSet
to the number of files in FileSet. A simpler
implementation can be used here that returns a 1.0 when all
the data has been read from the datastore, and 0.0
otherwise.

0° o° o° o° o° o o o° o°

See also matlab.io.Datastore, read, hasdata, reset, readall,

13-129

13 Large Data

13-130

% preview.
frac = progress(myds.Files);
end
end

methods (Access = protected)

function dsCopy = copyElement(myds)

%COPYELEMENT Create a deep copy of the datastore

Create a deep copy of the datastore. We need to call
copy on the datastore's property FileSet because it is
a handle object. Creating a deep copy allows methods
such as readall and preview, which call the copy method,
to remain stateless.

dsCopy = copyElement@matlab.mixin.Copyable(myds);

dsCopy.Files = copy(myds.Files);
end

o° o o° o° o°

function tf = write(myds, data, writeInfo, outFmt, varargin)
if outFmt == "dcm"
dicomwrite(data, writeInfo.SuggestedOutputName, varargin{:});
else
write@matlab.io.datastore.FileWritable(myds, data,
writeInfo, outFmt, varargin{:});
end
tf = true;
end
function files = getFiles(myds)
files = myds.Files.FileInfo.Filename;
end

end
end

Using the DICOMDatastore Class

After you implement the DICOMDatastore class, you can use the constructor to create a new
DICOMDatastore object that references the location of a set of DICOM files. For example, if you
have DICOM files in the folder C:\Data\DICOM\series-000001\:

ds = DICOMDatastore("C:\Data\DICOM\series-000001")

ds =
DICOMDatastore with properties:

Files: [1x1 matlab.io.datastore.FileSet]
SupportedOutputFormats: ["png" "jpg" "jpeg" "tif" "tiff" "dem"
DefaultOutputFormat: "dcm"
Folders: {'C:\Data\DICOM\series-000001'}

Class users of DICOMDatastore have access to these public methods:

methods (ds)

Methods for class DICOMDatastore:

DICOMDatastore copy isPartitionable preview read reset writeall

combine hasdata isShuffleable progress readall transform

Methods of DICOMDatastore inherited from handle.

In particular, with support for writeall, you can write the files to a new location:
writeall(ds,"C:\Data2\DICOM\")

This command creates copies of the datastore files in the folder C:\Data2\DICOM\series-000001.

For general information on authoring classes in MATLAB, see “Classes”.

Develop Custom Datastore for DICOM Data

See Also

matlab.io.Datastore |matlab.io.datastore.FileWritable |
matlab.io.datastore.FoldersPropertyProvider

More About
. “Develop Custom Datastore” on page 13-109
. “Testing Guidelines for Custom Datastores” on page 13-118

13-131

13 Large Data

Set Up Datastore for Processing on Different Machines or
Clusters

13-132

You can create and save a datastore on a platform that loads and works seamlessly on a different
platform by setting up the 'AlternateFileSystemRoots' property of the datastore. Use this
property when:

* You create a datastore on a local machine, and need to access and process the data on another
machine (possibly running a different operating system).

* You process your datastore with parallel and distributed computing involving different platforms,
cloud or cluster machines.

This example demonstrates the use of the 'AlternateFileSystemRoots' property for
TabularTextDatastore. However, you can use the same syntax for any of these datastores:
SpreadsheetDatastore, ImageDatastore, ParquetDatastore, FileDatastore,
KeyValueDatastore, and TallDatastore. To use the 'AlternateFileSystemRoots'
functionality for custom datastores, see matlab.io.datastore.DsFileSet and “Develop Custom
Datastore” on page 13-109.

Save Datastore and Load on Different File System Platform

Create a datastore on one file system that loads and works seamlessly on a different machine
(possibly of a different operating system). For example, create a datastore on a Windows machine,
save it, and then load it on a Linux machine.

First, before you create and save the datastore, identify the root paths for your data on the different
platforms. The root paths will differ based on the machine or file system. For instance, if you have
data on your local machine and a copy of the data on a cluster, then get the root paths for accessing
the data:

+ "Z:\DataSet" for your local Windows machine.
+ "/nfs-bldg0@0l/DataSet" for your Linux cluster.

Then, associate these root paths by using the 'AlternateFileSystemRoots' parameter of the
datastore.

altRoots = ["Z:\DataSet","/nfs-bldg001l/DataSet"];
ds = tabularTextDatastore('Z:\DataSet', 'AlternateFileSystemRoots',altRoots);

Examine the Files property of datastore. In this instance, the Files property contains the location
of your data as accessed by your Windows machine.

ds.Files
ans =

5x1 cell array
:\DataSet\datafileOl.csv'
:\DataSet\datafile02.csv'
:\DataSet\datafile03.csv'

:\DataSet\datafile04.csv'
:\DataSet\datafile®5.csv'

e e e]
NNNNN
B e e el sl ad

Set Up Datastore for Processing on Different Machines or Clusters

Save the datastore.
save ds saved on Windows.mat ds

Load the datastore on a Linux platform and examine the Files property. Since the root path
'Z:\DataSet' is not accessible on the Linux cluster, at load time, the datastore function
automatically updates the root paths based on the values specified in the
"AlternateFileSystemRoots' parameter. The Files property of the datastore now contains the
updated root paths for your data on the Linux cluster.

load ds saved on Windows.mat
ds.Files

ans =
5x1 cell array

{'/nfs-bldgb0l/DataSet/datafilefl.csv'}
{'/nfs-bldgb0l/DataSet/datafile02.csv'}
{'/nfs-bldgb0l/DataSet/datafiled3.csv'}
{'/nfs-bldgb0l/DataSet/datafilef4.csv'}
{'/nfs-bldgb0l/DataSet/datafiled5.csv'}

You can now process and analyze this datastore on your Linux machine.

Process Datastore Using Parallel and Distributed Computing

To process your datastore with parallel and distributed computing that involves different platforms,
cloud or cluster machines, you must predefine the 'AlternateFileSystemRoots' parameter. This
example demonstrates how to create a datastore on your local machine, analyze a small portion of the
data, and then use Parallel Computing Toolbox and MATLAB Parallel Server to scale up the analysis
to the entire dataset.

Create a datastore and assign a value to the 'AlternateFileSystemRoots' property. To set the
value for the 'AlternateFileSystemRoots' property, identify the root paths for your data on the
different platforms. The root paths differ based on the machine or file system. For example, identify
the root paths for data access from your machine and your cluster:

« "Z:\DataSet" from your local Windows Machine.
* "/nfs-bldg00l/DataSet" from the MATLAB Parallel Server Linux Cluster.

Then, associate these root paths using the AlternateFileSystemRoots property.

altRoots = ["Z:\DataSet","/nfs-bldg001l/DataSet"];
ds = tabularTextDatastore('Z:\DataSet', 'AlternateFileSystemRoots',altRoots);

Analyze a small portion of the data on your local machine. For instance, get a partitioned subset of
the data, clean the data by removing any missing entries, and examine a plot of the variables.

tt = tall(partition(ds,100,1));
summary (tt);

% analyze your data

tt = rmmissing(tt);
plot(tt.MyVarl,tt.Myvar2)

13-133

13 Large Data

Scale up your analysis to the entire dataset by using MATLAB Parallel Server cluster (Linux cluster).
For instance, start a worker pool using the cluster profile, and then perform analysis on the entire
dataset by using parallel and distributed computing capabilities.

parpool('MyMjsProfile")
tt = tall(ds);

summary (tt);

% analyze your data

tt = rmmissing(tt);
plot(tt.MyVarl,tt.MyvVar2)

See Also

datastore | TabularTextDatastore | SpreadsheetDatastore | ImageDatastore |
FileDatastore | KeyValueDatastore | TallDatastore

More About
. “Getting Started with Datastore” on page 13-86
. “Work with Remote Data” on page 13-93

13-134

Apache Parquet Data Type Mappings

Apache Parquet Data Type Mappings

MATLAB represents column-oriented data with tables and timetables. Each variable in a table or
timetable can have a different data type and any number of columns. Column vectors are the most
common shape of table and timetable variables.

The Apache™ Parquet file format is used for column-oriented heterogeneous data. Similar to MATLAB
tables and timetables, each of the columns in a Parquet file can have different data types. The
MATLAB Parquet functions use Apache Arrow functionality to read and write Parquet files. MATLAB
stores the original Arrow table schema in the Parquet file as custom metadata. Arrow uses the
original table schema to roundtrip certain data types.

Despite their similarity, the permitted data types in MATLAB tables and timetables sometimes do not
map exactly to the permitted data types in Parquet files. In some cases, it is necessary for MATLAB to
perform data type conversions to retain information in the data (such as missing values). This
conversion can sometimes result in a loss of precision in the data.

In general, MATLAB tables and timetables have these behaviors when they are converted to Parquet
files:
» Table properties set on the original table are not saved.

» Table row names or timetable row times are converted into a new table variable before being
written.

* When reading a variable name from a Parquet file, invalid table variable names are converted to
valid table variable names.

Parquet files use a small number of primitive (or physical) data types. The logical types extend the
physical types by specifying how they should be interpreted. Parquet data types not covered here are
not supported for reading from or writing to Parquet files (JSON, BSON, binary, and so on).

The following tables summarize the representable data types in MATLAB tables and timetables, as
well as how they map to corresponding types in Apache Arrow and Parquet files.

Numeric Data Types

Reading Numeric Data Types from Apache Parquet to MATLAB

Apache Parquet Data Type Apache MATLAB Notes
: : Arrow Data |Table or
Logical Type |Physical Type
9! yp ysl yp Type Timetable
Variable Type
None DOUBLE double double * Parquet data type is a 64-bit

floating-point value.

¢ MATLAB converts any null
floating-point values in
Parquet files to NaN values.

13-135

13 Large Data

13-136

Apache Parquet Data Type Apache MATLAB Notes
: : Arrow Data |Table or
Logical Type |Physical Type
9 ye yst e Type Timetable
Variable Type
None FLOAT float single Parquet data type is a 32-bit
floating-point value.
MATLAB converts any null
floating-point values in
Parquet files to NaN values.
INT INT32 int8 int8 If an array contains null
. values, the array is
* bitWidth= converted to a MATLAB
8 double and null values are
« isSigned= set to NaN.
true 64-bit integers are truncated
INT INT32 uint8 uint8 when converted to doubles if
values are larger in
* bitWidth= magnitude than flintmax.
5_3 _ parquetread converts
e 1isSigned= columns with null values to
false double arrays.
INT INT32 intl6 intl6 parquetDatastore will
o import null values as the
* bitWidth= sentinel value 0.
16
* 1isSigned=
true
INT INT32 uintl6 uintl6
¢ bitWidth=
16
* 1isSigned=
false
None INT32 int32 int32
INT INT32 uint32 uint32
¢ bitWidth=
32
* isSigned=
false
INT INT64 int64 int64
¢ bitWidth=
64
+ isSigned=
true

Apache Parquet Data Type Mappings

Apache Parquet Data Type Apache MATLAB Notes
: : Arrow Data |Table or

Logical Type |Physical Type

9! yp ysl yp Type Timetable

Variable Type

INT INT64 uint64 uint64
¢ bitWidth=

64
* 1isSigned=

false
None BOOLEAN boolean logical * Ifan array type BOOLEAN

contains null values, then
parquetread converts the
array to the MATLAB double
datatype and fills null
values with NaN.

e parquetread sets the null
values to NaN.

* parquetDatastore will
import null values as the
sentinel value false.

Writing Numeric Data Types from MATLAB to Apache Parquet

MATLAB Apache Apache Parquet Data Type Notes
Table or Arrow Data : .
Logical Type |[Physical Type
Timetable Type 9! ”» . »p
Variable Type
double double None DOUBLE ¢ MATLAB converts NaN
single Tlon: None FLOAT values to null values in the
Parquet file.
int8 int8 INT INT32 —
 bitWidth=
8
* 1isSigned=
true
uint8 uint8 INT INT32 —
 bitWidth=
8
* 1isSigned=
false

13-137

13 Large Data

13-138

MATLAB
Table or
Timetable
Variable Type

Apache

Apache Parquet Data Type

Notes

Arrow Data
Type

Logical Type

Physical Type

intl6

intl6

INT

INT32
bitWidth=
16

isSigned=
true

uintl6

uintl6

INT

INT32
bitWidth=
16

isSigned=
false

int32

int32

None

INT32

uint32

uint32

INT

INT32
bitWidth=
32

isSigned=
false

int64

int64

INT

INT64
bitWidth=
64

isSigned=
true

uint64

uinte4

INT

INT64
bitWidth=
64

isSigned=
false

logical

boolean

None

BOOLEAN

Binary Data Types

Reading Binary Data Types from Apache Parquet to MATLAB

Apache Parquet Data Type Apache Arrow MATLAB Table or |Notes
- - Data Type Timetable
Logical Type Physical Type
g P L » Variable Type
String BYTE ARRAY String string —

Apache Parquet Data Type Mappings

Apache Parquet Data Type

Apache Arrow

MATLAB Table or

Notes

: : Data Type Timetable
Logical Type Physical Type
9 yp y yp Variable Type
String BYTE_ARRAY Dictionary categorical * Only if the
)) Parquet file
* index type=i contains the
nt32 original Arrow
* value type=s schema, then
tring Arrow reads the
* ordered based ggtq asa
on metadata. Icuignary,
None FIXED LEN BYTE |FixedSizeBinar |cell of uint8 —
_ARRAY y(byte width) [values
None BYTE ARRAY Binary cell of uint8 —
values
Writing Binary Data Types from MATLAB to Apache Parquet
MATLAB Table or |Apache Arrow Apache Parquet Data Type Notes
Timetable Data Type Logical Type Physical Type
Variable Type 9 ”» o »
string LargeString String BYTE ARRAY + MATLAB
char LargeString String BYTE ARRAY converts string
: . = arrays to Arrow
cellstr LargeString String BYTE_ARRAY LargeString
arrays.

* Other Parquet
readers (such
as PyArrow)
may import
Parquet
String
columns as
LargeString
arrays based on
the original
Arrow table
schema stored
in Parquet files
written by
MATLAB.

* string(missi
ng) values are
written as null
values in the
Parquet file.

13-139

13 Large Data

13-140

MATLAB Table or
Timetable
Variable Type

Apache Arrow
Data Type

Apache Parquet Data Type

Notes

Logical Type

Physical Type

categorical

Dictionary

* values=strin
g

* 1indices can
be int8,
intl6, int32,
or int64

* ordered=true
/false can be
true or false
based on the
MATLAB
Ordinal
property

String

BYTE ARRAY

Date and Time Data Types

Reading Date and Time Data Types from Apache Parquet to MATLAB

Apache Parquet Data Type

Apache Arrow

Logical Type

Physical Type

Data Type

MATLAB Table or
Timetable
Variable Type

Notes

DATE

INT32

date32

datetime

o The INT32
value
represents the
number of days
since the Unix
epoch (January
1, 1970).

e null values are
imported as

NaT.

Apache Parquet Data Type Mappings

Apache Parquet Data Type

Logical Type

Physical Type

Apache Arrow
Data Type

MATLAB Table or
Timetable
Variable Type

Notes

Timestamp

* isAdjustedTo
UTC can be true
or false.

e TimeUnit =
can be
milliseconds,
microseconds,
or
nanoseconds.

INT64

timestamp

e unit
e tz=None

datetime

* When the
Parquet file
contains the
original Arrow
table schema as
metadata:

e If the
timestamp
data has
been
adjusted to
UTC, the
timezone is
determined
by the
original
schema.

e Ifno
timezone is
present in
the original
schema and
isAdjuste
dToUTC is
true,
MATLAB
sets the
TimeZone
property of
the
imported
datetime
array to
UTC.

* null
Timestamp and
Date values are
imported as
NaT values.

Time

* 1isAdjustedTo
UTC can be true
or false

e unit=millise
conds

INT32

time32 [ms]

e unit=ms

duration

e null time32
values are read
in MATLAB as
NaN sec.

13-141

13 Large Data

13-142

* isAdjustedTo

e TUnit can be

Apache Parquet Data Type Apache Arrow MATLAB Table or |Notes
- - Data Type Timetable
Logical Type Physical Type
9 ye yst yp Variable Type
Time INT64 time64 [us/ns] |duration * null time64

values are read
in MATLAB as

TimeZone
property of the
input datetime.

UTC=true/ microseconds NaN sec.
false or
e unit= nanoseconds.
* microseco
nds
* nanosecon
ds
Writing Date and Time Data Types from MATLAB to Apache Parquet
MATLAB Table or |Apache Arrow Apache Parquet Data Type Notes
Timetable Data Type Logical Type Physical Type
Variable Type 9 ”» o »
datetime timestamp Timestamp INT64 * This type
.))) i) i represents an
* TimeZoneis * unit=microse|s TimeUnit=mic instant in time.
set toat cor?ds |.'ose§onds . MATLAB
nonempty « tzissettothe |+ isAdjustedTo Sl
value. value of the UTC=true

precision is
truncated to 1
microsecond.
Display format
settings are not
saved.

* Date
represented is
unzoned.

* tzisbased on
the TimeZone
property.

o Ifthe
TimeZone
property is '',
isAdjustedTo
UTC is set to
false.

Apache Parquet Data Type Mappings

e unit=microse
conds

e unit=microse
conds

*+ isAdjustedTo
UTC=true

MATLAB Table or |Apache Arrow Apache Parquet Data Type Notes

Timetable Data Type Logical Type Physical Type

Variable Type g P . P

duration time64 Time INT64 « MATLAB
datetime

precision is
truncated to 1
microsecond.
Display format
settings are not
saved.

* NaN secare
written as null
values in the
Parquet file.

Nested Data

To write nested tables and nested timetables to Parquet files, use parquetwrite. To import nested
structured Parquet file data, use parquetread.

Reading Nested Types from Apache Parquet to MATLAB

Apache Parquet Data Type

Apache Arrow

MATLAB Table or

Notes

- - Data Type Timetable
Logical Type Physical Type
g P L » Variable Type
LIST Any LIST cell * MATLAB cells

(excluding
cellstrs) are
converted to
Arrow
LargelList
arrays.

* Other Parquet
readers (such
as PyArrow)
may import
Parquet LIST
columns as
LargelList
arrays based on
the original
Arrow table
schema.

13-143

13 Large Data

13-144

Apache Parquet Data Type

Apache Arrow

MATLAB Table or

Notes

: : Data Type Timetable
Logical Type Physical Type
9! yp ysl yp Variable Type
LIST with n-tuple |Any LIST with n-tuple |nested table o If the child of a
organization organization LIST is an n-

tuple, then the
LIST is
interpreted as a
struct array.

e For more
information on
the n-tuple
organization,
see Parquet
Logical Type
Definitions

Writing Nested Types from MATLAB to Parquet

MATLAB Table or

Apache Arrow

Apache Parquet Data Type

Notes

Timetable Data Type Logical Type Physical Type
Variable Type 9 7B y 2
cell LargelList LIST Any * MATLAB cells

(excluding
cellstrs) are
converted to
Arrow
LargelList
arrays.

* Other Parquet
readers (such
asPyArrow)
may import
Parquet LIST
columns as
LargelList
arrays based on
the original
Arrow table
schema.

https://arrow.apache.org/docs/python/api/datatypes.html
https://arrow.apache.org/docs/python/api/datatypes.html
https://arrow.apache.org/docs/python/api/datatypes.html

Apache Parquet Data Type Mappings

MATLAB Table or
Timetable
Variable Type

Apache Arrow
Data Type

Apache Parquet Data Type

Logical Type

Physical Type

Notes

nested table

Struct

NONE

Any

e Arrow writes
Struct arrays
as Parquet
group-
annotated
columns.

+ Ifthey exist,
MATLAB table
RowNames are
added as a field
to the exported
Arrow Struct.

nested timetable

Struct

NONE

Any

+ MATLAB table
RowTimes are
added to the
exported Arrow
Struct array.

See Also

parquetread | parquetwrite |write

13-145

13 Large Data

Tall Arrays for Out-of-Memory Data

13-146

Tall arrays are used to work with out-of-memory data that is backed by a datastore. Datastores
enable you to work with large data sets in small blocks that individually fit in memory, instead of
loading the entire data set into memory at once. Tall arrays extend this capability to enable you to
work with out-of-memory data using common functions.

What is a Tall Array?

Since the data is not loaded into memory all at once, tall arrays can be arbitrarily large in the first
dimension (that is, they can have any number of rows). Instead of writing special code that takes into
account the huge size of the data, such as with techniques like MapReduce, tall arrays let you work
with large data sets in an intuitive manner that is similar to the way you would work with in-memory
MATLAB arrays. Many core operators and functions work the same with tall arrays as they do with in-
memory arrays. MATLAB works with small blocks of the data at a time, handling all of the data
chunking and processing in the background, so that common expressions, such as A+B, work with big
data sets.

Benefits of Tall Arrays

Unlike in-memory arrays, tall arrays typically remain unevaluated until you request that the
calculations be performed using the gather function. This deferred evaluation allows you to work
quickly with large data sets. When you eventually request output using gather, MATLAB combines
the queued calculations where possible and takes the minimum number of passes through the data.
The number of passes through the data greatly affects execution time, so it is recommended that you
request output only when necessary.

Note Since gather returns results as in-memory MATLAB arrays, standard memory considerations
apply. MATLAB might run out of memory if the result returned by gather is too large.

Creating Tall Tables

Tall tables are like in-memory MATLAB tables, except that they can have any number of rows. To
create a tall table from a large data set, you first need to create a datastore for the data. If the
datastore ds contains tabular data, then tall(ds) returns a tall table or tall timetable containing
the data. See “Datastore” for more information about creating datastores.

Create a spreadsheet datastore that points to a tabular file of airline flight data. For folders that
contain a collection of files, you can specify the entire folder location, or use the wildcard character,
"*.csv', to include multiple files with the same file extension in the datastore. Clean the data by
treating 'NA' values as missing data so that tabularTextDatastore replaces them with NaN
values. Also, set the format of a few text variables to %s so that tabularTextDatastore reads them
as cell arrays of character vectors.

ds = tabularTextDatastore('airlinesmall.csv');

ds.TreatAsMissing = 'NA';
ds.SelectedFormats{strcmp(ds.SelectedVariableNames, 'TailNum')} = '%s';
ds.SelectedFormats{strcmp(ds.SelectedVariableNames, 'CancellationCode')} = '%s';

Create a tall table from the datastore. When you perform calculations on this tall table, the
underlying datastore reads blocks of data and passes them to the tall table to process. Neither the
datastore nor the tall table retain any of the underlying data.

Tall Arrays for Out-of-Memory Data

tt

tall(ds)
tt =
Mx29 tall table

Year Month DayofMonth DayOfWeek DepTime CRSDepTime ArrTime CRSArrTime

1987 10 21 3 642 630 735 727
1987 10 26 1 1021 1020 1124 1116
1987 10 23 5 2055 2035 2218 2157
1987 10 23 5 1332 1320 1431 1418
1987 10 22 4 629 630 746 742
1987 10 28 3 1446 1343 1547 1448
1987 10 8 4 928 930 1052 1049
6

1987 10 10 859 900 1134 1123

The display indicates that the number of rows, M, is currently unknown. MATLAB displays some of the
rows, and the vertical ellipses : indicate that more rows exist in the tall table that are not currently
being displayed.

Creating Tall Timetables

If the data you are working with has a time associated with each row of data, then you can use a tall
timetable to work on the data. For information on creating tall timetables, see Extended Capabilities
(timetable).

In this case, the tall table tt has times associated with each row, but they are broken down into
several table variables such as Year, Month, DayofMonth, and so on. Combine all of these pieces of
datetime information into a single new tall datetime variable Dates, which is based on the departure
times DepTime. Then, create a tall timetable using Dates as the row times. Since Dates is the only
datetime variable in the table, the table2timetable function automatically uses it for the row
times.

hrs = (tt.DepTime - mod(tt.DepTime,100))/100;

mins = mod(tt.DepTime, 100);

tt.Dates = datetime(tt.Year, tt.Month, tt.DayofMonth, hrs, mins, 0);
tt(:,1:8) = [1;

TT = table2timetable(tt)

T =

Mx21 tall timetable

Dates UniqueCarrier FlightNum TailNum ActualElapsedTime CRSE1a]
21-0ct-1987 06:42:00 'PS* 1503 "NA' 53 57
26-0ct-1987 10:21:00 'PS* 1550 "NA' 63 56
23-0ct-1987 20:55:00 'PS* 1589 "NA' 83 82
23-0ct-1987 13:32:00 'PS* 1655 "NA' 59 58
22-0ct-1987 06:29:00 'PS' 1702 "NA' 77 72
28-0ct-1987 14:46:00 'PS' 1729 "NA' 61 65
08-0ct-1987 09:28:00 'PS* 1763 "NA' 84 79

13-147

13 Large Data

10-0ct-1987 08:59:00 'PS! 1800 "NA' 155 143

Creating Tall Arrays

When you extract a variable from a tall table or tall timetable, the result is a tall array of the
appropriate underlying data type. A tall array can be a numeric, logical, datetime, duration, calendar
duration, categorical, string, or cell array. Also, you can convert an in-memory array A into a tall array
with tA = tall(A). The in-memory array A must have one of the supported data types.

Extract the arrival delay ArrDelay from the tall timetable TT. This creates a new tall array variable
with underlying data type double.

a = TT.ArrDelay

a =
Mx1 tall double column vector

8
8
21
13
4
59
3
11

The classUnderlying and isaUnderlying functions are useful to determine the underlying data
type of a tall array.

Deferred Evaluation

One important aspect of tall arrays is that as you work with them, most operations are not performed
immediately. These operations appear to execute quickly, because the actual computation is deferred
until you specifically request that the calculations be performed. You can trigger evaluation of a tall
array with either the gather function (to bring the result into memory) or the write function (to
write the result to disk). This deferred evaluation is important because even a simple command like
size(X) executed on a tall array with a billion rows is not a quick calculation.

As you work with tall arrays, MATLAB keeps track of all of the operations to be carried out. This
information is then used to optimize the number of passes through the data that will be required
when you request output with the gather function. Thus, it is normal to work with unevaluated tall
arrays and request output only when you require it. For more information, see “Deferred Evaluation
of Tall Arrays” on page 13-152.

Calculate the mean and standard deviation of the arrival delay. Use these values to construct the
upper and lower thresholds for delays that are within one standard deviation of the mean. Notice that
the result of each operation indicates that the array has not been calculated yet.

m = mean(a, 'omitnan')

13-148

Tall Arrays for Out-of-Memory Data

m =
tall double
?

Preview deferred. Learn more.

std(a, 'omitnan')

9]
]

tall

?

Preview deferred. Learn more.

one_sigma_ bounds

[m-s m m+s]

one_sigma_bounds

MxNx... tall array

? ? ?
? ? ?

Preview deferred. Learn more.

Evaluation with gather

The benefit of delayed evaluation is that when the time comes for MATLAB to perform the
calculations, it is often possible to combine the operations in such a way that the number of passes
through the data is minimized. So even if you perform many operations, MATLAB only makes extra
passes through the data when absolutely necessary.

The gather function forces evaluation of all queued operations and brings the resulting output into
memory. For this reason, you can think of gather as a bridge between tall arrays and in-memory
arrays. For example, you cannot control if or while loops using a tall logical array, but once the
array is evaluated with gather it becomes an in-memory logical array that you can use in these
contexts.

Since gather returns the entire result in MATLAB, you should make sure that the result will fit in
memory.

Use gather to calculate one sigma bounds and bring the result into memory. In this case,
one_sigma_bounds requires several operations to calculate, but MATLAB combines the operations
into one pass through the data. Since the data in this example is small, gather executes quickly.
However, the elimination of passes through the data becomes more valuable as the size of your data
increases.

sigl = gather(one_sigma_ bounds)

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 1.5 sec

13-149

13 Large Data

13-150

Evaluation completed in 1.8 sec
sigl =
-23.4572 7.1201 37.6975

You can specify multiple inputs and outputs to gather if you want to evaluate several tall arrays at
once. This technique is faster than calling gather multiple times. For example, calculate the
minimum and maximum arrival delay. Computed separately, each value requires a pass through the
data to calculate for a total of two passes. However, computing both values simultaneously requires
only one pass through the data.

[max_delay, min delay] = gather(max(a),min(a))

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 1.1 sec
Evaluation completed in 1.1 sec

max_delay =

1014

min delay =
-64

These results indicate that on average, most flights arrive about 7 minutes late. But it is within one
standard deviation for a flight to be up to 37 minutes late or 23 minutes early. The quickest flight in
the data set arrived about an hour early, and the latest flight was delayed by many hours.

Saving, Loading, and Checkpointing Tall Arrays

The save function saves the state of a tall array, but does not copy any of the data. The
resulting .mat file is typically small. However, the original data files must be available in the same
location in order to subsequently use load.

The write function makes a copy of the data and saves the copy as a collection of files, which can
consume a large amount of disk space. write executes all pending operations on the tall array to

calculate the values prior to writing. Once write copies the data, it is independent of the original
raw data. Therefore, you can recreate the tall array from the written files even if the original raw

data is no longer available.

You can recreate the tall array from the written files by creating a new datastore that points to the
location where the files were written. This functionality enables you to create checkpoints or
snapshots of tall array data. Creating a checkpoint is a good way to save the results of preprocessing
your data, so that the data is in a form that is more efficient to load.

If you have a tall array TA, then you can write it to the folder location with the command:
write(location,TA);
Later, to reconstruct TA from the written files, use the commands:

ds datastore(location);
TA = tall(ds);

Tall Arrays for Out-of-Memory Data

Additionally, you can use the write function to trigger evaluation of a tall array and write the results
to disk. This use of write is similar to gather, however, write does not bring any results into
memory.

Supporting Functions

Most core functions work the same way with tall arrays as they do with in-memory arrays. However,
in some cases the way that a function works with tall arrays is special or has limitations. You can tell
whether a function supports tall arrays, and if it has any limitations, by looking at the bottom of the
reference page for the function in the Extended Capabilities section (for an example, see
filloutliers).

For a filtered list of all MATLAB functions that support tall arrays, see Function List (Tall Arrays).
Tall arrays also are supported by several toolboxes, enabling you to do things like write machine

learning algorithms, deploy standalone apps, and run calculations in parallel or on a cluster. For more
information, see “Extend Tall Arrays with Other Products” on page 13-185.

See Also
gather | tall | datastore | table | mapreducer

More About

. “Index and View Tall Array Elements” on page 13-157
. “Visualization of Tall Arrays” on page 13-171

13-151

13 Large Data

Deferred Evaluation of Tall Arrays

One of the differences between tall arrays and in-memory MATLAB arrays is that tall arrays typically
remain unevaluated until you request that calculations be performed. (The exceptions to this rule
include plotting functions like plot and histogram and some statistical fitting functions like fitlm,
which automatically evaluate tall array inputs.) While a tall array is in an unevaluated state, MATLAB
might not know its size, its data type, or the specific values it contains. However, you can still use
unevaluated arrays in your calculations as if the values were known. This allows you to work quickly
with large data sets instead of waiting for each command to execute. For this reason, it is
recommended that you use gather only when you require output.

MATLAB keeps track of all the operations you perform on unevaluated tall arrays as you enter them.
When you eventually call gather to evaluate the queued operations, MATLAB uses the history of
unevaluated commands to optimize the calculation by minimizing the number of passes through the
data. Used properly, this optimization can save huge amounts of execution time by eliminating
unnecessary passes through large data sets.

Display of Unevaluated Tall Arrays

The display of unevaluated tall arrays varies depending on how much MATLAB knows about the array
and its values. There are three pieces of information reflected in the display:

* Array size — Unknown dimension sizes are represented by the variables M or N in the display. If
no dimension sizes are known, then the size appears as MxNx.

* Array data type — If the array has an unknown underlying data type, then its type appears as
tall array. If the type is known, it is listed as, for example, tall double array.

* Array values — If the array values are unknown, then they appear as ?. Known values are
displayed.

MATLAB might know all, some, or none of these pieces of information about a given tall array,
depending on the nature of the calculation.

For example, if the array has a known data type but unknown size and values, then the unevaluated
tall array might look like this:

MxNx... tall double array

? ? ?
? ? ?

If the type and relative size are known, then the display could be:
1xN tall char array

? ? ?

If some of the data is known, then MATLAB displays the known values:

100x3 tall double matrix

13-152

Deferred Evaluation of Tall Arrays

0.8147 0.1622 0.6443
0.9058 0.7943 0.3786
0.1270 0.3112 0.8116
0.9134 0.5285 0.5328
0.6324 0.1656 0.3507
0.0975 0.6020 0.9390
0.2785 0.2630 0.8759
0 0 0

.5469 .6541 .5502

Evaluation with gather

The gather function is used to evaluate tall arrays. gather accepts tall arrays as inputs and returns
in-memory arrays as outputs. For this reason, you can think of this function as a bridge between tall
arrays and in-memory arrays. For example, you cannot control if or while loop statements using a
tall logical array, but once the array is evaluated with gather it becomes an in-memory logical value
that you can use in these contexts.

gather performs all queued operations on a tall array and returns the entire result in memory. Since
gather returns results as in-memory MATLAB arrays, standard memory considerations apply.
MATLAB might run out of memory if the result returned by gather is too large.

Most of the time you can use gather to see the entire result of a calculation, particularly if the
calculation includes a reduction operation such as sum or mean. However, if the result is too large to
fit in memory, then you can use gather(head (X)) or gather(tail (X)) to perform the calculation
and look at only the first or last few rows of the result.

Resolve Errors with gather

If you enter an erroneous command and gather fails to evaluate a tall array variable, then you must
delete the variable from your workspace and recreate the tall array using only valid commands. This
is because MATLAB keeps track of all the operations you perform on unevaluated tall arrays as you
enter them. The only way to make MATLAB “forget” about an erroneous statement is to reconstruct
the tall array from scratch.

Example: Calculate Size of Tall Array
This example shows what an unevaluated tall array looks like, and how to evaluate the array.

Create a datastore for the data set airlinesmall. csv. Convert the datastore into a tall table and
then calculate the size.

varnames = {'ArrDelay', 'DepDelay', 'Origin', 'Dest'};

ds = tabularTextDatastore('airlinesmall.csv', 'TreatAsMissing', 'NA‘,
'SelectedVariableNames', varnames);

tt = tall(ds)

tt =

Mx4 tall table

ArrDelay DepDelay Origin Dest

13-153

13 Large Data

13-154

8 12 'LAX' 'sjc!
8 1 'sjc! 'BUR'
21 20 'SAN' 'SMF'
13 12 'BUR' 'sjc!
4 -1 'SMF' "LAX'
59 63 'LAX' 'sjc!
3 -2 'SAN' 'SFO'
11 -1 'SEA' "LAX'

s = size(tt)

S:

1x2 tall double row vector
? ?
Preview deferred. Learn more.

Calculating the size of a tall array returns a small answer (a 1-by-2 vector), but the display indicates
that an entire pass through the data is still required to calculate the size of tt.

Use the gather function to fully evaluate the tall array and bring the results into memory. As the
command executes, there is a dynamic progress display in the command window that is particularly
helpful with long calculations.

Note Always ensure that the result returned by gather will be able to fit in memory. If you use
gather directly on a tall array without reducing its size using a function such as mean, then MATLAB
might run out of memory.

tableSize = gather(s)

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 0.42 sec
Evaluation completed in 0.48 sec

tableSize =

123523 4

Example: Multi-pass Calculations with Tall Arrays

This example shows how several calculations can be combined to minimize the total number of passes
through the data.

Create a datastore for the data set airlinesmall. csv. Convert the datastore into a tall table.
varnames = {'ArrDelay', 'DepDelay', 'Origin', 'Dest'};

ds = tabularTextDatastore('airlinesmall.csv', 'TreatAsMissing', 'NA‘,

'SelectedVariableNames', varnames);
tt = tall(ds)

tt =

Deferred Evaluation of Tall Arrays

Mx4 tall table

ArrDelay DepDelay Origin Dest

8 12 "LAX' 'SJc!
8 1 'SJc! ‘BUR'
21 20 'SAN' 'SMF'
13 12 ‘BUR' 'SJc!
4 -1 'SMF' "LAX'
59 63 "LAX' 'SJc!
3 -2 'SAN' 'SFO'

11 -1 'SEA' "LAX'

Subtract the mean value of DepDelay from ArrDelay to create a new variable AdjArrDelay. Then
calculate the mean value of AdjArrDelay and subtract this mean value from AdjArrDelay. If these
calculations were all evaluated separately, then MATLAB would require four passes through the data.

AdjArrDelay = tt.ArrDelay - mean(tt.DepDelay, 'omitnan');
AdjArrDelay = AdjArrDelay - mean(AdjArrDelay, 'omitnan')
AdjArrDelay =

Mx1 tall double column vector

?
?
?

Preview deferred. Learn more.

Evaluate AdjArrDelay and view the first few rows. Because some calculations can be combined,
only three passes through the data are required.

gather(head(AdjArrDelay))

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 3: Completed in 0.4 sec

- Pass 2 of 3: Completed in 0.39 sec

- Pass 3 of 3: Completed in 0.23 sec

Evaluation completed in 1.2 sec

ans =

0.8799
0.8799
13.8799
5.8799
-3.1201
51.8799
-4.1201
3.8799

13-155

13 Large Data

13-156

Summary of Behavior and Recommendations

Tall arrays remain unevaluated until you request output using gather.

2 Use gather in most cases to evaluate tall array calculations. If you believe the result of the
calculations might not fit in memory, then use gather(head (X)) or gather(tail(X)) instead.

3 Work primarily with unevaluated tall arrays and request output only when necessary. The more
queued calculations there are that are unevaluated, the more optimization MATLAB can do to
minimize the number of passes through the data.

4 Ifyou enter an erroneous tall array command and gather fails to evaluate a tall array variable,
then you must delete the variable from your workspace and recreate the tall array using only
valid commands.

See Also
gather |write

More About
. “Tall Arrays for Out-of-Memory Data” on page 13-146

Index and View Tall Array Elements

Index and View Tall Array Elements

Tall arrays are too large to fit in memory, so it is common to view subsets of the data rather than the
entire array. This page shows techniques to extract and view portions of a tall array.

Extract Top Rows of Array

Use the head function to extract the first rows in a tall array. head does not force evaluation of the
array, so you must use gather to view the result.

tt tall(table(randn(1000,1), randn(1000,1), randn(1000,1)))

tt =

1,000x3 tall table

Varl Var2 Var3
0.53767 0.6737 0.29617

1.8339 -0.66911 1.2008
-2.2588 -0.40032 1.0902
0.86217 -0.6718 -0.3587
0.31877 0.57563 -0.12993
-1.3077 -0.77809 0.73374
-0.43359 -1.0636 0.12033
0.34262 0.55298 1.1363

t head = gather(head(tt))
t head =
8x3 table

Varl Var2 Var3
0.53767 0.6737 0.29617

1.8339 -0.66911 1.2008
-2.2588 -0.40032 1.0902
0.86217 -0.6718 -0.3587
0.31877 0.57563 -0.12993
-1.3077 -0.77809 0.73374
-0.43359 -1.0636 0.12033
0.34262 0.55298 1.1363

Extract Bottom Rows of Array

Similarly, you can use the tail function to extract the bottom rows in a tall array.

t tail = gather(tail(tt))

t tail

13-157

13 Large Data

8x3 table

Varl Var2 Var3
0.64776 0.47349 -0.27077
-0.31763 1.3656 0.43966
1.769 -1.6378 -0.50614
1.5106 2.0237 -0.18435
0.16401 0.77779 0.402
-0.28276 -0.5489 0.53923
1.1522 -0.12601 -0.73359
-1.1465 0.29958 -0.26837

Indexing Tall Arrays

All tall arrays support parentheses indexing. When you index a tall array using parentheses, such as
T(A) or T(A,B), the result is a new tall array containing only the specified rows and columns (or
variables).

Like most other operations on tall arrays, indexing expressions are not evaluated immediately. You
must use gather to evaluate the indexing operation. For more information, see “Deferred Evaluation
of Tall Arrays” on page 13-152.

You can perform these types of indexing in the first dimension of a tall array:

B = A(:,..), where : selects all rows in A.

L]
o
1]

A(idx,..), where idx is a tall numeric column vector or non-tall numeric vector.

L]
9]
]

A(L,..), where L is a tall or non-tall logical array of the same height as A. For example, you
can use relational operators, such as tt(tt.Varl < 10, :). When you index a tall array with a
tall logical array, there are a few requirements. Each of the tall arrays:

* Must be the same size in the first dimension.
* Must be derived from a single tall array.
* Must not have been indexed differently in the first dimension.

« B = A(P:D:Q,..) orB = A(P:Q,..), where P:D:Q and P:Q are valid colon indexing
expressions.

* head(tt, k) provides a shortcut for tt(1:k, :).
* tail(tt, k) provides a shortcut for tt(end-k:end, :).

Additionally, the number of subscripts you must specify depends on how many dimensions the array

has:

* For tall column vectors, you can specify a single subscript such as t(1:10).

» For tall row vectors, tall tables, and tall timetables, you must specify two subscripts.

» For tall arrays with two or more dimensions, you must specify two or more subscripts. For
example, if the array has three dimensions, you can use an expression such as tA(1:10,:,:) or
tA(1:10, :), but not linear indexing expressions such as tA(1:10) or tA(:).

13-158

Index and View Tall Array Elements

Tip The find function locates nonzero elements in tall column vectors, and can be useful to generate
a vector of indices for elements that meet particular conditions. For example, k = find(X<0)
returns the linear indices for all negative elements in X.

For example, use parentheses indexing to retrieve the first ten rows of tt.
tt(1:10,:)

ans =

10x3 tall table

Varl Var2 Var3
0.53767 0.6737 0.29617

1.8339 -0.66911 1.2008
-2.2588 -0.40032 1.0902
0.86217 -0.6718 -0.3587
0.31877 0.57563 -0.12993
-1.3077 -0.77809 0.73374
-0.43359 -1.0636 0.12033

0.34262 0.55298 1.1363

Retrieve the last 5 values of the table variable Varl.
tt(end-5:end, 'Varl')
ans =

6x1 tall table

Varl

1.769
1.5106
0.16401
-0.28276
1.1522
-1.1465

Retrieve every 100th row from the tall table.
tt(1:100:end, :)

ans =

10x3 tall table

Varl Var2 Var3

0.53767 0.6737 0.29617
0.84038 -0.041663 -0.52093
0.18323 1.3419 0.052993

13-159

13 Large Data

13-160

0.079934 -0.40492 -1.6163
0.26965 -1.5144 0.98399
-0.079893 -1.6848 -0.91182
0.47586 -2.1746 1.1754

1.9085 -0.79383 0.18343

Extract Tall Table Variables

The variables in a tall table or tall timetable are each tall arrays of different underlying data types.
Standard indexing methods of tables and timetables also apply to tall tables and tall timetables,
including the use of timerange, withtol, and vartype.

For example, index a tall table using dot notation T.VariableName to retrieve a single variable of
data as a tall array.

tt.Varl
ans =
1,000x1 tall double column vector

.5377
.8339
.2588
.8622
.3188
.3077
.4336
.3426

[1
OOHOONRFO

Use tab completion to look up the variables in a table if you cannot remember a precise variable
name. For example, type tt. and then press Tab. A menu pops up:

Index and View Tall Array Elements

Command Window

»» £t = tall(table(randn(1000,1),randn (1000,1), randn (1000,1)))
Tt =
1,000=3 tall tabkle
Varl Var2 Var3
0.8706 1.305& -0.42774
0.33076 0.98397 -0.57937
-1.3479 -1.2514 0.92597
1.547%9 -0.17875 0.0055104
-0.61664 -0.74341 -0.63449
-0.689857 0.23324 0.85833
- 2.1013 -0.48078
-0 N.B76687 1.4897
Varl
Varz
Var3d
B o et

You can also perform multiple levels of indexing. For example, extract the first 5 elements in the
variable Var2. In this case you must use one of the supported forms of indexing for tall arrays in the
parentheses.

tt.Var2(1:5)

ans =
5x1 tall double column vector

0.6737
-0.6691
-0.4003
-0.6718

0.5756

See “Access Data in Tables” or “Select Times in Timetable” for more indexing information.

Concatenation with Tall Arrays

In order to concatenate two or more tall arrays, as in [A1 A2 A3 ..], each of the tall arrays must be
derived from a single tall array and must not have been indexed differently in the first dimension.
Indexing operations include functions such as vertcat, splitapply, sort, cell2mat,
synchronize, retime, and so on.

For example, concatenate a few columns from tt to create a new tall matrix.

[tt.Varl tt.Var2]

13-161

13 Large Data

13-162

ans =
1,000%x2 tall double matrix

.5377 0.6737
.8339 -0.6691
.2588 -0.4003
.8622 -0.6718
.3188 0.5756
.3077 -0.7781
.4336 -1.0636
.3426 0.5530

o '
OO OONRKFO

To combine tall arrays with different underlying datastores, it is recommended that you use write to
write the arrays (or calculation results) to disk, and then create a single new datastore referencing
those locations:

files = {'folder/path/to/filel', 'folder/path/to/file2'};
ds = datastore(files);

Assignment and Deletion with Tall Arrays

The same subscripting rules apply whether you use indexing to assign or delete elements from a tall
array. Deletion is accomplished by assigning one or more elements to the empty matrix, [].

“()" Assignment

You can assign elements into a tall array using the general syntax A(m,n,...) = B. The tall array A
must exist and have a nonempty second dimension. The first subscript m must be either a colon : or a
tall logical vector. With this syntax, B can be:

* Scalar

* A tall array derived from A(m,..) where m is the same subscript as above. For example,
A(m,1:10).

* An empty matrix, [] (for deletion)
“.” Assignment

For table indexing using the syntax A.Varl = B, the array B must be a tall array with the
appropriate number of rows. Typically, B is derived from existing data in the tall table. Varl can be
either a new or existing variable in the tall table.

You cannot assign tall arrays as variables in a regular table, even if the table is empty.

Extract Specified Number of Rows in Sorted Order

Sorting all of the data in a tall array can be an expensive calculation. Most often, only a subset of
rows at the beginning or end of a tall array is required to answer questions like “What is the first row
in this data by year?”

The topkrows function returns a specified number of rows in sorted order for this purpose. For
example, use topkrows to extract the top 12 rows sorted in descending order by the second column.

Index and View Tall Array Elements

t topl2 = gather(topkrows(tt,12,2))

Evaluating tall expression using the Local MATLAB Session:
Evaluation completed in 0.067 sec

t topl2 =
12x3 table

Varl Var2 Var3
-1.0322 3.5699 -1.4689

1.3312 3.4075 0.17694
-0.27097 3.1585 0.50127
0.55095 2.9745 1.382
0.45168 2.9491 -0.8215
-1.7115 2.7526 -0.3384
-0.21317 2.7485 1.9033
-0.43021 2.7335 0.77616
-0.59003 2.7304 0.67702
0.47163 2.7292 0.92099
-0.47615 2.683 -0.26113
0.72689 2.5383 -0.57588

Summarize Tall Array Contents

The summary function returns useful information about each variable in a tall table or timetable, such
as the minimum and maximum values of numeric variables, and the number of occurrences of each
category for categorical variables.

For example, create a tall table for the outages.csv data set and display the summary information.
This data set contains numeric, datetime, and categorical variables.

fmts = {'%C' '%D' '%f' '%f' '%D' '%C'};

ds = tabularTextDatastore('outages.csv', 'TextscanFormats', fmts);
T = tall(ds);

summary (T)

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 0.16 sec

- Pass 2 of 2: Completed in 0.19 sec

Evaluation completed in 0.46 sec

Variables:

Region: 1,468x1 categorical

Values:
MidWest 142
NorthEast 557
SouthEast 389
SouthWest 26
West 354

OQutageTime: 1,468x1 datetime
Values:

13-163

13 Large Data

13-164

Min 2002-02-01 12:18
Max 2014-01-15 02:41

Loss: 1,468x1 double

Values:
Min 0
Max 23418
NumMissing 604
Customers: 1,468x1 double
Values:
Min 0
Max 5.9689e+06
NumMissing 328
RestorationTime: 1,468x1 datetime
Values:
Min 2002-02-07 16:50
Max 2042-09-18 23:31
NumMissing 29
Cause: 1,468x1 categorical
Values:
attack 294
earthquake 2
energy emergency 188
equipment fault 156
fire 25
severe storm 338
thunder storm 201
unknown 24
wind 95
winter storm 145

Return Subset of Calculation Results

Many of the examples on this page use gather to evaluate expressions and bring the results into
memory. However, in these examples it is also trivial that the results fit in memory, since only a few
rows are indexed at a time.

In cases where you are unsure if the result of an expression will fit in memory, it is recommended that
you use gather(head (X)) or gather(tail(X)). These commands still evaluate all of the queued
calculations, but return only a small amount of the result that is guaranteed to fit in memory.

If you are certain that the result of a calculation will not fit in memory, use write to evaluate the tall
array and write the results to disk instead.

See Also
tall | table | topkrows | head | tail | gather

Index and View Tall Array Elements

More About
. “Tall Arrays for Out-of-Memory Data” on page 13-146

13-165

13 Large Data

Histograms of Tall Arrays

13-166

This example shows how to use histogram and histogram2 to analyze and visualize data contained
in a tall array.

Create Tall Table

Create a datastore using the airlinesmall. csv data set. Treat 'NA' values as missing data so that
they are replaced with NaN values. Select a subset of the variables to work with. Convert the
datastore into a tall table.

varnames = {'ArrDelay', 'DepDelay', 'Year',k 'Month'};

ds = tabularTextDatastore('airlinesmall.csv', 'TreatAsMissing', 'NA',
'SelectedVariableNames', varnames);

T = tall(ds)

T =

Mx4 tall table

ArrDelay DepDelay Year Month

8 12 1987 10
8 1 1987 10
21 20 1987 10
13 12 1987 10
4 -1 1987 10
59 63 1987 10
3 -2 1987 10

11 -1 1987 10

Plot Histogram of Arrival Delays

Plot a histogram of the ArrDelay variable to examine the frequency distribution of arrival delays.
h = histogram(T.ArrDelay);

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 1.6 sec

- Pass 2 of 2: Completed in 0.82 sec

Evaluation completed in 3.3 sec

title('Flight arrival delays, 1987 - 2008'")
xlabel('Arrival Delay (minutes)"')
ylabel('Frequency"')

Histograms of Tall Arrays

10t Flight arrival delays, 1987 - 2008

35

Frequency
]
(] tn

-
o
T

i

0.5

D lil i i i i i
0 200 400 600 800 1000

Arrival Delay (minutes)

The arrival delay is most frequently a small number near 0, so these values dominate the plot and
make it difficult to see other details.

Adjust Bin Limits of Histogram

Restrict the histogram bin limits to plot only arrival delays between -50 and 150 minutes. After you
create a histogram object from a tall array, you cannot change any properties that would require
recomputing the bins, including BinWidth and BinLimits. Also, you cannot use morebins or
fewerbins to adjust the number of bins. In these cases, use histogram to reconstruct the
histogram from the raw data in the tall array.

figure
histogram(T.ArrDelay, 'BinLimits',[-50,150])

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 1.3 sec

- Pass 2 of 2: Completed in 0.83 sec

Evaluation completed in 2.7 sec

title('Flight arrival delays between -50 and 150 minutes, 1987 - 2008')
xlabel('Arrival Delay (minutes)")
ylabel('Frequency")

13-167

13 Large Data

13-168

3000 Flight arrival delays between -50 and 150 minutes, 1987 - 2008

8000 ~

7000 +

Frequency

[} L
&0 40 -20 0 20 40 60 80 100 120 140 160
Arrival Delay (minutes)

From this plot, it appears that long delays might be more common than initially expected. To
investigate further, find the probability of an arrival delay that is one hour or greater.

Probability of Delays One Hour or Greater

The original histogram returned an object h that contains the bin values in the Values property and
the bin edges in the BinEdges property. You can use these properties to perform in-memory
calculations.

Determine which bins contain arrival delays of one hour (60 minutes) or more. Remove the last bin
edge from the logical index vector so that it is the same length as the vector of bin values.

idx = h.BinEdges >= 60;
idx(end) = [1;

Use idx to retrieve the value associated with each selected bin. Add the bin values together, divide
by the total number of samples, and multiply by 100 to determine the overall probability of a delay
greater than or equal to one hour. Since the total number of samples is computed from the original
data set, use gather to explicitly evaluate the calculation and return an in-memory scalar.

N = numel(T.ArrDelay);
P = gather(sum(h.Values(idx))*100/N)
P = 4.4809

Overall, the odds of an arrival delay one hour or longer are about 4.5%.

Histograms of Tall Arrays

Plot Bivariate Histogram of Delays by Month

Plot a bivariate histogram of the arrival delays that are 60 minutes or longer by month. This plot
examines how seasonality affects arrival delay.

figure
h2 = histogram2(T.Month,T.ArrDelay,[12 50], 'YBinLimits', [60 11007, ...
'Normalization', 'probability', 'FaceColor','flat');

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 1.5 sec

Evaluation completed in 1.7 sec

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 1: Completed in 1.2 sec

Evaluation completed in 1.3 sec

title('Probability of arrival delays 1 hour or greater (by month)')
xlabel('Month (1-12)")

ylabel('Arrival Delay (minutes)"')

zlabel('Probability"')

xticks(1:12)

view(-126,23)

Probability of arrival delays 1 hour or greater (by month)

0.04 -

0.03

0.02

Probability

N 800
Month (1-12) 1000

Arrival Delay (minutes)

Delay Statistics by Month

Use the bivariate histogram object to calculate the probability of having an arrival delay one hour or
greater in each month, and the mean arrival delay for each month. Put the results in a table with the

13-169

13 Large Data

variable P containing the probability information and the variable MeanByMonth containing the mean
arrival delay.

monthNames = {'Jan','Feb', 'Mar', 'Apr', 'May', 'Jun', ...
‘Jul','Aug', 'Sep','Oct','Nov', 'Dec'}"';

G findgroups(T.Month);

M splitapply(@(x) mean(x,'omitnan'),T.ArrDelay,G);

delayByMonth = table(monthNames, sum(h2.Values,2)*100, gather(M),
'VariableNames',{'Month','P', '"MeanByMonth'})

Evaluating tall expression using the Local MATLAB Session:
- Pass 1 of 2: Completed in 0.77 sec

- Pass 2 of 2: Completed in 1.4 sec

Evaluation completed in 2.8 sec

delayByMonth=12x3 table

Month P MeanByMonth
{'Jan'} 9.6497 8.5954
{'Feb'} 7.7058 7.3275
{'Mar"'} 9.0543 7.5536
{'Apr'} 7.2504 6.0081
{'May"'} 7.4256 5.2949
{'Jun'} 10.35 10.264
{'Jul'} 10.228 8.7797
{'Aug'} 8.5989 7.4522
{'Sep'} 5.4116 3.6308
{'0Oct'} 6.042 4.6059
{'Nov'} 6.9002 5.2835
{'Dec'} 11.384 10.571

The results indicate that flights in the holiday month of December have an 11.4% chance of being
delayed longer than an hour, but are delayed by 10.5 minutes on average. This is closely followed by
the summer months of June and July, where there is about a 10% chance of being delayed an hour or
more and the average delay is roughly 9 or 10 minutes.

See Also
histogram | histogram2 | tall

More About
. “Tall Arrays for Out-of-Memory Data” on page 13-146

13-170

Visualization of Tall Arrays

Visualization of Tall Arrays

Visualizing large data sets requires that the data is summarized, binned, or sampled in some way to
reduce the number of points that are plotted on the screen. In some cases, functions such as
histogram and pie bin the data to reduce the size, while other functions such as plot and
scatter use a more complex approach that avoids plotting duplicate pixels on the screen. For
problems where the pixel overlap is relevant to the analysis, the binscatter function also offers an
efficient way to visualize density patterns.

Visualizing tall arrays does not require the use of gather. MATLAB immediately evaluates and
displays visualizations of tall arrays. Currently, you can visualize tall arrays using the functions and

methods in this table.

Function

Required Toolboxes

Notes

plot

scatter

binscatter

These functions plot in
iterations, progressively adding
to the plot as more data is read.
During the updates, a progress
indicator shows the proportion
of data that has been plotted.
Zooming and panning is
supported during the updating
process, before the plot is
complete. To stop the update
process, press the pause button
in the progress indicator.

histogram

histogram2
pie

For visualizing categorical data
only.

binScatterPlot

Statistics and Machine Learning
Toolbox™

Figure contains a slider to
control the brightness and color
detail in the image. The slider
adjusts the value of the Gamma
image correction parameter.

ksdensity

Statistics and Machine Learning
Toolbox

Produces a probability density
estimate for the data, evaluated
at 100 points for univariate
data, or 900 points for bivariate
data.

13-171

13 Large Data

Function Required Toolboxes Notes
datasample Statistics and Machine Learning [datasample enables you to
Toolbox extract a subsample of a tall

array in a statistically sound
way compared to simple
indexing. If the subset of data is
small enough to fit in memory,
then you can use plotting and
fitting functions on the subset
that do not directly support tall
arrays.

Tall Array Plotting Examples

This example shows several different ways you can visualize tall arrays.

Create a datastore for the airlinesmall. csv data set, which contains rows of airline flight data.
Select a subset of the table variables to work with and remove rows that contain missing values.

ds = tabularTextDatastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.SelectedVariableNames = {'Year', 'Month', 'ArrDelay', 'DepDelay', 'Origin', 'Dest'};

T = tall(ds);
T = rmmissing(T)
T =

Mx6 tall table

Year Month ArrDelay DepDelay Origin Dest

1987 10 8 12 {'LAX"'} {'SJC"}
1987 10 8 1 {'sJC'} {'BUR"}
1987 10 21 20 {'SAN'} {'SMF'}
1987 10 13 12 {'BUR"} {'SJC"}
1987 10 4 -1 {'SMF'} {'LAX'}
1987 10 59 63 {'LAX"} {'SJC'}
1987 10 3 -2 {'SAN'} {'SF0'}

1987 10 11 -1 {'SEA"} {"LAX"}

Pie Chart of Flights by Month

Convert the numeric Month variable into a categorical variable that reflects the name of the month.
Then plot a pie chart showing how many flights are in the data for each month of the year.

T.Month = categorical(T.Month,1:12,{'Jan','Feb"', 'Mar', "Apr', 'May', 'Jun','Jul', "Aug', 'Sep"', 'Oct",
T =
Mx6 tall t